YOLO Drone Detection Dataset|无人机检测数据集|YOLO数据集
收藏YOLOv8-Based Drone Detection: Building a Robust Model with Extensive Data
摘要
无人机(UAV)在监控、摄影和配送服务等领域的应用越来越广泛。然而,无人机的快速普及引发了安全和隐私威胁的担忧。为了解决这些问题,实时识别和跟踪无人机的有效检测系统至关重要。在本研究中,我们提出了一个全面的数据集,并使用YOLOv8架构提出了一个先进的无人机检测模型。
引言
无人机的广泛采用导致了可靠无人机检测系统的迫切需求,以确保公共场所的安全。由于无人机的小尺寸、快速移动和多样化的外观,传统的目标检测方法不足。因此,需要能够准确识别复杂环境中无人机的高级检测模型。
数据集
为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而精心策划。该数据集来自Kaggle上的公开可用YOLO Drone Detection Dataset,包含在各种环境条件和相机视角下捕获的多样化标注图像。数据集包括无人机实例以及其他常见物体,以实现鲁棒的检测和分类。
方法论
在本研究中,我们采用YOLOv8架构,这是一个流行且高效的目标检测框架,用于无人机检测。YOLOv8,即“You Only Look Once”版本8,使用单个神经网络同时预测图像中多个物体的边界框和类别概率。该架构提供实时性能,非常适合无人机检测应用。
实验设置
为了训练和评估我们的无人机检测模型,我们利用Colab平台,这是一个提供强大计算资源和深度学习库的云环境。利用Colab的GPU加速能力,我们使用我们精心策划的数据集训练YOLOv8模型,并微调其参数以优化检测准确性和效率。
YOLO
- 单次检测:YOLO采用与使用区域提议技术的传统目标检测方法不同的方法。YOLO不是将图像分割成区域并分别检查每个区域,而是单次通过进行检测。它将输入图像分割成一个网格,并为每个网格单元预测边界框和类别概率。
- 基于网格的预测:YOLO将输入图像分割成固定大小的网格,通常是7x7或13x13。每个网格单元负责预测落入其中的物体。对于每个网格单元,YOLO预测多个边界框(每个边界框都有一个置信度分数)和类别概率。
- 锚框:为了处理不同大小和宽高比的物体,YOLO使用锚框。这些锚框是预定义的不同形状和大小的框。每个锚框与特定的网格单元相关联。网络预测相对于网格单元的锚框的偏移量和尺寸,以及置信度分数和类别概率。
- 训练:YOLO使用标注的边界框注释和分类标签的组合进行训练。训练过程涉及优化网络以最小化定位损失(与边界框预测的准确性相关)和分类损失(与类别预测的准确性相关)。
- 速度和准确性权衡:YOLO通过牺牲一些定位准确性来实现实时目标检测,相比于Faster R-CNN等较慢的方法。然而,它仍然实现了具有竞争力的准确性,同时提供了显著更快的推理速度,非常适合实时应用。
关键词
- 无人机检测
- YOLOv8
- 目标检测
- 深度学习
- 监控
- 安全
结果和讨论
我们展示了我们的无人机检测模型在训练和测试数据集上的全面性能结果。评估指标包括精确度、召回率和F1分数,这些是评估模型检测准确性的标准度量。此外,我们分析了模型在各种环境条件下的性能,并讨论了其优势和局限性。
结论
我们的研究通过提出一个全面的数据集和一个使用YOLOv8架构的先进检测模型,解决了可靠无人机检测系统的关键需求。我们精心策划的数据集和模型的有希望的性能为无人机检测领域提供了宝贵的贡献。本研究的结果可以为无人机可能构成潜在风险的领域提供增强的安全措施和隐私保护。

中国区域地面气象要素驱动数据集 v2.0(1951-2024)
中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 74 年(1951~2024 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 74 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。
国家青藏高原科学数据中心 收录
ChemBL
ChemBL是一个化学信息学数据库,包含大量生物活性数据,涵盖了药物发现和开发过程中的各种化学实体。数据集包括化合物的结构信息、生物活性数据、靶点信息等。
www.ebi.ac.uk 收录
PU Dataset
德国帕德博恩大学(PU)轴承故障诊断数据集提供了丰富的轴承故障信号数据,包括内圈、外圈和滚动体故障等多种类型的轴承故障。与其他数据集相比,PU数据集的特色在于包含了大量的电机驱动系统故障数据,为轴承故障诊断研究提供了一个全面的实验平台。
github 收录
中国逐日格点降水数据集V2(1960–2024,0.1°)
CHM_PRE V2数据集是一套高精度的中国大陆逐日格点降水数据集。该数据集基于1960年至今共3476个观测站的长期日降水观测数据,并纳入11个降水相关变量,用于表征降水的相关性。数据集采用改进的反距离加权方法,并结合基于机器学习的LGBM算法构建。CHM_PRE V2与现有的格点降水数据集(包括CHM_PRE V1、GSMaP、IMERG、PERSIANN-CDR和GLDAS)表现出良好的时空一致性。数据集基于63,397个高密度自动雨量站2015–2019年的观测数据进行验证,发现该数据集显著提高了降水测量精度,降低了降水事件的高估,为水文建模和气候评估提供了可靠的基础。CHM_PRE V2 数据集提供分辨率为0.1°的逐日降水数据,覆盖整个中国大陆(18°N–54°N,72°E–136°E)。该数据集涵盖1960–2024年,并将每年持续更新。日值数据以NetCDF格式提供,为了方便用户,我们还提供NetCDF和GeoTIFF格式的年度和月度总降水数据。
国家青藏高原科学数据中心 收录
猫狗分类
## 数据集描述 ### 数据集简介 本数据集是简单的猫狗二分类数据集,共2个类别,其中训练集包含275张带注释的图像,验证集包含70张带注释的图像。整个数据集共10.3MB,可用于快速模型验证、性能评估、小数据集训练等。 ### 数据集支持的任务 可用于快速模型验证、性能评估、小数据集训练等。 ## 数据集的格式和结构 ### 数据格式 数据集包括训练集train和验证集val,train和val文件夹之下按文件夹进行分类,共有2个子文件夹,同类别标签的图片在同一个文件夹下,图片格式为JPG。同时包含与标注文件中label id相对应的类名文件classname.txt。 ### 数据集加载方式 ```python from modelscope.msdatasets import MsDataset from modelscope.utils.constant import DownloadMode ms_train_dataset = MsDataset.load( 'cats_and_dogs', namespace='tany0699', subset_name='default', split='train') # 加载训练集 print(next(iter(ms_train_dataset))) ms_val_dataset = MsDataset.load( 'cats_and_dogs', namespace='tany0699', subset_name='default', split='validation') # 加载验证集 print(next(iter(ms_val_dataset))) ``` ### 数据分片 本数据集包含train和val数据集。 | 子数据集 | train | val | test | |---------|-------------:|-----------:|---------:| | default | 训练集 | 验证集 | / | ### Clone with HTTP ```bash git clone https://www.modelscope.cn/datasets/tany0699/cats_and_dogs.git ```
魔搭社区 收录
