YOLO Drone Detection Dataset|无人机检测数据集|YOLO数据集
收藏YOLOv8-Based Drone Detection: Building a Robust Model with Extensive Data
摘要
无人机(UAV)在监控、摄影和配送服务等领域的应用越来越广泛。然而,无人机的快速普及引发了安全和隐私威胁的担忧。为了解决这些问题,实时识别和跟踪无人机的有效检测系统至关重要。在本研究中,我们提出了一个全面的数据集,并使用YOLOv8架构提出了一个先进的无人机检测模型。
引言
无人机的广泛采用导致了可靠无人机检测系统的迫切需求,以确保公共场所的安全。由于无人机的小尺寸、快速移动和多样化的外观,传统的目标检测方法不足。因此,需要能够准确识别复杂环境中无人机的高级检测模型。
数据集
为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而精心策划。该数据集来自Kaggle上的公开可用YOLO Drone Detection Dataset,包含在各种环境条件和相机视角下捕获的多样化标注图像。数据集包括无人机实例以及其他常见物体,以实现鲁棒的检测和分类。
方法论
在本研究中,我们采用YOLOv8架构,这是一个流行且高效的目标检测框架,用于无人机检测。YOLOv8,即“You Only Look Once”版本8,使用单个神经网络同时预测图像中多个物体的边界框和类别概率。该架构提供实时性能,非常适合无人机检测应用。
实验设置
为了训练和评估我们的无人机检测模型,我们利用Colab平台,这是一个提供强大计算资源和深度学习库的云环境。利用Colab的GPU加速能力,我们使用我们精心策划的数据集训练YOLOv8模型,并微调其参数以优化检测准确性和效率。
YOLO
- 单次检测:YOLO采用与使用区域提议技术的传统目标检测方法不同的方法。YOLO不是将图像分割成区域并分别检查每个区域,而是单次通过进行检测。它将输入图像分割成一个网格,并为每个网格单元预测边界框和类别概率。
- 基于网格的预测:YOLO将输入图像分割成固定大小的网格,通常是7x7或13x13。每个网格单元负责预测落入其中的物体。对于每个网格单元,YOLO预测多个边界框(每个边界框都有一个置信度分数)和类别概率。
- 锚框:为了处理不同大小和宽高比的物体,YOLO使用锚框。这些锚框是预定义的不同形状和大小的框。每个锚框与特定的网格单元相关联。网络预测相对于网格单元的锚框的偏移量和尺寸,以及置信度分数和类别概率。
- 训练:YOLO使用标注的边界框注释和分类标签的组合进行训练。训练过程涉及优化网络以最小化定位损失(与边界框预测的准确性相关)和分类损失(与类别预测的准确性相关)。
- 速度和准确性权衡:YOLO通过牺牲一些定位准确性来实现实时目标检测,相比于Faster R-CNN等较慢的方法。然而,它仍然实现了具有竞争力的准确性,同时提供了显著更快的推理速度,非常适合实时应用。
关键词
- 无人机检测
- YOLOv8
- 目标检测
- 深度学习
- 监控
- 安全
结果和讨论
我们展示了我们的无人机检测模型在训练和测试数据集上的全面性能结果。评估指标包括精确度、召回率和F1分数,这些是评估模型检测准确性的标准度量。此外,我们分析了模型在各种环境条件下的性能,并讨论了其优势和局限性。
结论
我们的研究通过提出一个全面的数据集和一个使用YOLOv8架构的先进检测模型,解决了可靠无人机检测系统的关键需求。我们精心策划的数据集和模型的有希望的性能为无人机检测领域提供了宝贵的贡献。本研究的结果可以为无人机可能构成潜在风险的领域提供增强的安全措施和隐私保护。

PASCAL VOC 2007
这个挑战的目标是从现实场景中的许多视觉对象类别中识别对象(即不是预先分割的对象)。它基本上是一个监督学习问题,因为它提供了一组标记图像的训练集。已选择的 20 个对象类别是: 人:人 动物:鸟、猫、牛、狗、马、羊 交通工具:飞机、自行车、船、公共汽车、汽车、摩托车、火车 室内:瓶子、椅子、餐桌、盆栽、沙发、电视/显示器 将有两个主要比赛和两个较小规模的“品酒师”比赛。内容:提供的训练数据由一组图像组成;每个图像都有一个注释文件,为图像中存在的 20 个类别之一中的每个对象提供一个边界框和对象类别标签。请注意,来自多个类的多个对象可能出现在同一图像中。
OpenDataLab 收录
中国劳动力动态调查
“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。
中国学术调查数据资料库 收录
China Health and Nutrition Survey (CHNS)
China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。
www.cpc.unc.edu 收录
大学生运动和体质健康数据集(2014-2023)
《大学生运动与体质健康数据集(2014-2023)》涵盖了大学生群体在运动能力、基础身体形态、身体机能及身体素质等多个方面的关键基础数据。该数据集的采集时间跨度为2014年至2023年,样本采集自全国34个省级行政区域,共计123281名大学生参与,平均年龄为20.53岁。建立大学生运动和体质健康数据集可以准确把握学生体质健康的整体水平和变化趋势,了解大学生运动和体质健康状况,对指导个性化健康干预、优化体育教育资源配置、支持促进科学研究以及提高公众健康意识等均具有重要意义。
国家人口健康科学数据中心 收录
MeSH
MeSH(医学主题词表)是一个用于索引和检索生物医学文献的标准化词汇表。它包含了大量的医学术语和概念,用于描述医学文献中的主题和内容。MeSH数据集包括主题词、副主题词、树状结构、历史记录等信息,广泛应用于医学文献的分类和检索。
www.nlm.nih.gov 收录
