five

PUMA Survey 5.2. Insights in societal changes in Austria

收藏
CESSDA2024-09-14 更新2024-08-03 收录
下载链接:
https://datacatalogue.cessda.eu/detail?lang=en&q=732665d3017608d1bc5ae8fc0c5c7bd6a5497c62be580593dc12b50a5737f258
下载链接
链接失效反馈
资源简介:
Full edition for scientific use. PUMA Surveys consist of separate modules designed and prepared by different principle investigators. This PUMA Survey consists of three modules: MODULE 1 "Non-Health Influences on Generic Health Ratings: Comparing the Susceptibility of Self-Rated Health (SRH) and the Minimum European Health Module (MEHM) to Biases Due to Optimism, Hypochondriasis, and Social Desirability", MODULE 2 "Online completion versus face-to-face completion. Testing mixing modes of data collection for Austrian social surveys", MODULE 3 "Concerns of Smartphone Owners When Using their Device for Research". Fieldwork was conducted by Statistics Austria.<br><br/>MODULE 1: Non-Health Influences on Generic Health Ratings: Comparing the Susceptibility of Self-Rated Health (SRH) and the Minimum European Health Module (MEHM) to Biases Due to Optimism, Hypochondriasis, and Social Desirability (Patrick Lazarevič, Martina Brandt, Marc Luy, Caroline Berghammer) <br> Self-rated health (SRH) is the most widely used single-indicator of health in many scientific disciplines (Jylhä 2009). Even though more comprehensive approaches to measure generic health exist, they are often too time consuming for survey interviews, especially in multi-thematic surveys, due to time limitations. Research in this regard has shown that, even when controlling for comprehensive health information, SRH is noticeably and independently influenced by non-health factors like satisfaction with life or social participation (e.g., Lazarevič 2018). While these results illustrate that health ratings are influenced by non-health factors, the personality traits that are assumed to bias SRH (e.g., optimism, social desirability, or hypochondriasis) are typically not directly measured. The Minimum European Health Module (MEHM), as proposed by Robine & Jagger (2003), complements SRH with the questions whether the respondent suffers from a chronic disease and whether and to what extent they are limited in their usual activities due to a health problem. Thus, MEHM can be seen as a compromise between using SRH as a single-indicator and a comprehensive scale while covering the two most relevant factors for health ratings, i.e., chronic diseases and the functional status (Lazarevič 2018). While MEHM is obviously less time- and cost-intensive than more comprehensive approaches to measure health and there was some research done on its components separately (e.g., Berger et al. 2015), hardly anything is known about its usefulness as a short-scale of generic health, its overall psychometric properties, and its susceptibility to non-health factors potentially biasing the health measurement. This module tested the feasibility and utility of using the Minimum European Health Module (MEHM) as a short scale for measuring generic health. We demonstrate the feasibility of extracting a factor score from MEHM utilizing confirmatory factor analyses based on polychoric correlations. Further analyses suggest that this factor score might be useful in reducing bias in generic health measurement due to optimism and social desirability. <br/><br>MODULE 2: Online completion versus face-to-face completion. Testing mixing modes of data collection for Austrian social surveys (Markus Hadler, Franz Höllinger, Anja Eder) <br> Collecting data online is a promising tool, given the problems survey research faces in terms of lowering response rates and increasing costs. Yet, the results on the comparability of online and face-to-face surveys are ambiguous (see Roberts et al. 2016). Therefore, the aim of our research is to test differences in responses when completing surveys online compared to collecting the same data face-to-face. Our PUMA-module collects some of the core ISSP questions online, which were asked face-to-face (CAPI) in the same time-period. The topics of the ISSP questionnaires 2017 and 2018 are “Social Networks” and “Religion.” At face value, we expect that these two areas may attract different respondents when conducted online as compared to face-to-face. Online networking should be more prevalent and traditional religious activities less common among the online respondents. If there are no significant differences between these two samples, our study will be a strong indicator that online tools are valid instruments. Therefore, the mixed modes design aims to break new ground in understanding the advantages and limitations, the costs and benefits of combining online and face-to-face interviews in Austria on the basis of two prominent survey modules from the International Social Survey Programme. <br/><br>MODULE 3: Concerns of Smartphone Owners When Using their Device for Research (Florian Keusch, Martin Weichbold) <br> Smartphone use is on the rise worldwide (Pew Research Center 2017). Survey researchers are aware that smartphone users increasingly complete online surveys on their mobile devices and have investigated the quality of survey data provided via smartphones (e.g., Couper et al. 2017; Keusch & Yan 2017). At the same time, the rising penetration of smartphones also gives researchers the chance to collect data from smartphone users that goes beyond self-reporting through surveys. Smartphones can be used to collect a variety of data about respondents such as geolocation, measures of physical activity, online behavior and browser history, app usage, call logs, or photos (Link et al. 2014). These data would allow researchers to make inferences about, among others, users’ mobility patterns, consumer behavior, health, and social interactions. Compared to surveys, which rely on self-reports, passive mobile data collection has the potential to provide richer data (because it can be collected in much higher frequencies), to decrease respondent burden (because fewer survey questions need to be asked), and to reduce measurement error (because of reduction in recall errors and social desirability). However, agreeing to allow for passive collection of data from smartphones is an additional step in the consent process, and participants might feel uncomfortable sharing these data with researchers due to security, privacy, and confidentiality concerns. In addition, different subgroups might differ in their skills of smartphone use and thus feel more or less comfortable using smartphones for research, leading to bias due to differential nonresponse of specific groups. This module wants to find out whether new forms of smartphone data collection (using sensors, apps, and camera) could be a supplement to survey research as they provide rich data and could enlarge our knowledge about people’s behavior while reducing respondent burden. Collecting these data has ethical and practical implications: agreeing to collect data from smartphones is an additional step in the consent process, and participants might feel uncomfortable sharing these data with researchers due to security, privacy, and confidentiality concerns. In addition, different subgroups might differ in their skills of smartphone use and thus feel more or less comfortable using smartphones for research, leading to bias due to differential nonparticipation of specific groups. We find that concern for using smartphones for research differs by research task, and that the diversity of smartphone activities correlates with concern.
提供机构:
The Austrian Social Science Data Archive
作者:
PUMA (Plattform für Umfragen, Methoden und empirische Analysen)
开放时间:
2019-04-12
创建时间:
2019-04-12
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4120个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github2024-05-31 收录

YOLO Drone Detection Dataset

为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。

github2024-05-31 收录

OpenSonarDatasets

OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。

github2024-11-22 收录

Solar Radiation Data

该数据集包含全球多个地点的太阳辐射数据,涵盖了不同时间段和气象条件下的辐射强度。数据包括直接辐射、散射辐射和总辐射等指标,适用于太阳能资源评估和气候研究。

www.nrel.gov2024-10-25 收录

FAOSTAT Agricultural Data

FAOSTAT Agricultural Data 是由联合国粮食及农业组织(FAO)提供的全球农业数据集。该数据集涵盖了农业生产、贸易、价格、土地利用、水资源、气候变化、人口统计等多个方面的详细信息。数据包括了全球各个国家和地区的农业统计数据,旨在为政策制定者、研究人员和公众提供全面的农业信息。

www.fao.org2024-10-27 收录