Stanford Cars Dataset|汽车识别数据集|机器学习数据集
收藏数据集概述
数据集名称
Stanford Cars Dataset - Vehicle Recognition
数据集描述
- 数据量: 包含16,185张汽车图像。
- 类别数量: 共有196个汽车类别。
- 数据分割: 数据被分为训练集和测试集两部分。
- 图像特征: 图像包含车辆类别标签和边界框信息,类别详细到品牌、型号和年份。
- 图像格式: 图像为JPG格式,数据集以TGZ/TAR格式压缩。
数据集用途
- 用于构建车辆识别预测模型,目的是通过输入图像识别汽车的年份、品牌和型号。
- 潜在应用包括开发移动应用帮助用户识别感兴趣的车辆,以及用于交通法律执行中的车辆特征提取。
模型与算法
- 将探索多种分类算法,包括随机森林、支持向量机、增强方法及卷积神经网络。
- 分析自定义和最先进的CNN架构,并探索特征提取和选择方法。
- 通过添加至少30张图像到验证集来评估模型的实际预测能力。

LFW
人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download
AI_Studio 收录
Plant-Diseases
Dataset for Plant Diseases containg variours Plant Disease
kaggle 收录
Large and Multi-modality Satellite Datasets
随着遥感数据的不断丰富和大模型技术的快速发展,大量用于预训练和图像生成等任务的大规模遥感数据集相继发布。为了便于更好地理解和利用这些数据集,我们整理并总结了目前可用的资源,特别关注全球分布和多模态数据集。
github 收录
用于陆面模拟的中国土壤数据集(第二版)
本研究对中国范围内0-2米六个标准深度层(0-5、5-15、15-30、30-60、60-100和100-200厘米)的23种土壤物理和化学属性进行了90米空间分辨率的制图。该数据集源自第二次土壤普查的8979个土壤剖面,世界土壤信息服务的1540个土壤剖面,第一次全国土壤普查的76个土壤剖面,以及区域数据库的614个土壤剖面。该数据集包括pH值、砂粒、粉粒、粘粒、容重、有机碳含量、砾石、碱解氮、总氮、阳离子交换量、孔隙度、总钾、总磷、有效钾、有效磷和土壤颜色(包括蒙赛尔颜色和RGB两种形式)。数据集的缺失值为“fillvalue = -32768”。数据集以栅格格式提供,有Tiff和netCDF两种格式。为了满足陆面建模中不同应用对空间分辨率的不同要求,CSDLv2 提供了 90 米、1 公里和 10公里空间分辨率的版本。各个土壤属性的单位参见说明文档。该数据集相对于第一版具有更好的数据质量,可广泛应用于陆面过程模拟等地学相关研究。
国家青藏高原科学数据中心 收录
中国高分辨率高质量PM2.5数据集(2000-2023)
ChinaHighPM2.5数据集是中国高分辨率高质量近地表空气污染物数据集(ChinaHighAirPollutants, CHAP)中PM2.5数据集。该数据集利用人工智能技术,使用模式资料填补了卫星MODIS MAIAC AOD产品的空间缺失值,结合地基观测、大气再分析和排放清单等大数据生产得到2000年至今全国无缝隙地面PM2.5数据。数据十折交叉验证决定系数R2为0.92,均方根误差RMSE为10.76 µg/m3。主要范围为整个中国地区,空间分辨率为1 km,时间分辨率为日、月、年,单位为µg/m3。注意:该数据集持续更新,如需要更多数据,请发邮件联系作者(weijing_rs@163.com; weijing@umd.edu)。 数据文件中包含NC转GeoTiff的四种代码(Python、Matlab、IDL和R语言)nc2geotiff codes。
国家青藏高原科学数据中心 收录