five

Free Sample Dataset - 1000 High Resolution Images & Metadata|图像数据数据集|机器学习数据集

收藏
Databricks2024-05-09 收录
图像数据
机器学习
下载链接:
https://marketplace.databricks.com/details/3da47c97-478c-4935-a0e7-c61502c7c7b7/Shutterstock_Free-Sample-Dataset---1000-High-Resolution-Images-&-Metadata
下载链接
链接失效反馈
资源简介:
**Overview** This is a free sample dataset consisting of 1000 images and accompanying metadata sourced from our +550 million image library. Image types for this sample include photos, vectors, and illustrations across a vast range of content categories and settings. This sample includes a wide range of metadata fields including content descriptions and keywords that make it ideal for powering a wide variety of machine learning use cases. If you’d like to start licensing data from the full range of imagery and metadata available at Shutterstock please reach out directly to our team at sales.databricks@shutterstock.com to start using our tailored services to help ideate, curate and customize datasets for your unique business needs. **Use cases** This type of data can be licensed from Shutterstock for a wide variety of use cases including powering machine learning models that have generative capabilities. **Metadata** Sample metadata fields included in this dataset are listed below, for a full list of all metadata available from Shutterstock please contact our team at sales.databricks@shutterstock.com. **asset metadata:** id keywords image_type is_creative mature_flag date_submitted date_captured asset_location popularity_score german_description spanish_description french_description korean_description japanese_description labels moderation_labels has_model_release has_people primary_category
 **file metadata:** asset_id asset_file_size asset_file_extension asset_file_size_in_bytes width height orientation
 **model metadata:** asset_id model_release_id age_range age_in_years gender ethnicity **Our data** Shutterstock offers the largest, highest quality and most diverse collection of creative content with best-in-class metadata, giving technology businesses the scale and accuracy they need to build and sustain a wide variety of machine learning models. Our growing library of +550M images, +40M videos, +4M music and audio tracks, and +1.2M 3D models and data is human-reviewed for accuracy and IP infringement, allowing you to use our data worry-free and avoid unwanted or unlawful content. We ethically source all content from over 2 million creators in +150 countries and with over 60 million new assets added annually, our ever-growing library gives you access to fresh and diverse datasets that can be refreshed regularly to meet all your data needs.
提供机构:
Shutterstock
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

COD10KD, NC4K-D, CAMO-D

该数据集由华中科技大学的研究团队创建,旨在为现实中的伪装物体检测(RCOD)任务提供基准测试。数据集基于现有的COD10K-v2、NC4K和CAMO数据集,通过手动标注边界框和类别标签,生成了COD10KD、NC4K-D和CAMO-D三个新的数据集。这些数据集包含了伪装物体与其背景高度相似的特征,适用于检测任务的评估。数据集的应用领域主要集中在搜索与救援、军事打击等需要精确定位伪装物体的场景,旨在通过优化检测模型的前景与背景识别能力,提升RCOD任务的性能。

arXiv 收录

PetFace

PetFace数据集由京都大学和日本东京大学联合创建,是一个大规模的动物面部识别数据集,包含257,484个独特的个体,跨越13个动物家族和319个品种类别。数据集包含1,012,934张图像,通过互联网自动和手动过滤过程收集,确保数据集不仅规模大,而且细节丰富且清洁。数据集提供了包括性别、品种、颜色和图案在内的细粒度注释,支持对已知和未知个体的识别。PetFace数据集的应用领域包括动物行为监测、栖息地调查和失踪动物寻找,旨在推动非侵入性动物自动识别方法的发展。

arXiv 收录

UAVDT Dataset

The authors constructed a new UAVDT Dataset focused on complex scenarios with new level challenges. Selected from 10 hours raw videos, about 80, 000 representative frames are fully annotated with bounding boxes as well as up to 14 kinds of attributes (e.g., weather condition, flying altitude, camera view, vehicle category, and occlusion) for three fundamental computer vision tasks: object detection, single object tracking, and multiple object tracking.

datasetninja.com 收录

HDFS, BGL, Liberty, Thunderbird

该仓库包含四个数据集:HDFS、BGL、Liberty和Thunderbird。这些数据集用于基于日志的异常检测实验,每个数据集都提供了日志消息数量、日志序列数量、训练和测试数据中的异常数量及异常比例等详细统计信息。

github 收录