five

Monthly active users of leading long-form video apps in China 2024|视频平台数据集|用户活跃度数据集

收藏
www.statista.com2025-01-16 收录
视频平台
用户活跃度
下载链接:
https://www.statista.com/statistics/910676/china-monthly-active-users-leading-online-video-apps/
下载链接
链接失效反馈
资源简介:
In September 2024, Youku was the leading long-formed video streaming app in China with about 443 million monthly active users. Tencent Video trailed with almost 422vmillion active users while iQIYI secured its third place with around 413 million active users. Short video apps - one of the driving forces in China's online video industry - were not included in this ranking.

于2024年9月,优酷成为中国领先的长视频流媒体应用程序,月活跃用户数约为4.43亿。腾讯视频紧随其后,月活跃用户数接近4.22亿,而爱奇艺则以约4.13亿的月活跃用户数稳固其第三的位置。短视频应用程序——作为中国在线视频行业的主要推动力之一——并未包含在本排名之中。
提供机构:
Statista
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

China Groundgroundwater Monitoring Network

该数据集包含中国地下水监测网络的数据,涵盖了全国范围内的地下水位、水质和相关环境参数的监测信息。数据包括但不限于监测站点位置、监测时间、水位深度、水质指标(如pH值、溶解氧、总硬度等)以及环境因素(如气温、降水量等)。

www.ngac.org.cn 收录

MedChain

MedChain是由香港城市大学、香港中文大学、深圳大学、阳明交通大学和台北荣民总医院联合创建的临床决策数据集,包含12,163个临床案例,涵盖19个医学专科和156个子类别。数据集通过五个关键阶段模拟临床工作流程,强调个性化、互动性和顺序性。数据来源于中国医疗网站“iiYi”,经过专业医生验证和去识别化处理,确保数据质量和患者隐私。MedChain旨在评估大型语言模型在真实临床场景中的诊断能力,解决现有基准在个性化医疗、互动咨询和顺序决策方面的不足。

arXiv 收录

中国陆域及周边逐日1km全天候地表温度数据集(TRIMS LST;2000-2023)

地表温度(Land surface temperature, LST)是地球表面与大气之间界面的重要参量之一。它既是地表与大气能量交互作用的直接体现,又对于地气过程具有复杂的反馈作用。因此,地表温度不仅是气候变化的敏感指示因子和掌握气候变化规律的重要前提,还是众多模型的直接输入参数,在许多领域有广泛的应用,如气象气候、环境生态、水文等。伴随地学及相关领域研究的深入和精细化,学术界对卫星遥感的全天候地表温度(All-weather LST)具有迫切的需求。 本数据集的制备方法是增强型的卫星热红外遥感-再分析数据集成方法。方法的主要输入数据为Terra/Aqua MODIS LST产品和GLDAS等数据,辅助数据包括卫星遥感提供的植被指数、地表反照率等。方法充分利用了卫星热红外遥感和再分析数据提供的地表温度高频分量、低频分量以及地表温度的空间相关性,最终重建得到较高质量的全天候地表温度数据集。 评价结果表明,本数据集具有良好的图像质量和精度,不仅在空间上无缝,还与当前学术界广泛采用的逐日1 km Terra/Aqua MODIS LST产品在幅值和空间分布上具有较高的一致性。当以MODIS LST为参考时,该数据集在白天和夜间的平均偏差(MBE)为0.09K和-0.03K,偏差标准差(STD)为1.45K和1.17K。基于19个站点实测数据的检验结果表明,其MBE为-2.26K至1.73K,RMSE为0.80K至3.68K,且在晴空与非晴空条件下无显著区别。 本数据集的时间分辨率为逐日4次,空间分辨率为1km,时间跨度为2000年-2023年;空间范围包括我国陆域的主要区域(包含港澳台地区,暂不包含我国南海诸岛)及周边区域(72°E-135°E,19°N-55°N)。本数据集的缩写名为TRIMS LST(Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless LST),以便用户使用。需要说明的是,TRIMS LST的空间子集TRIMS LST-TP(中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2023)V2)同步在国家青藏高原科学数据中心发布,以减少相关用户数据下载和处理的工作量。

国家青藏高原科学数据中心 收录

AgiBot World

为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。

github 收录