five

SUG-UAV Multirotor Dataset with Multi-sensor Integration in Indoor and Urban Areas|无人机数据集|多传感器集成数据集

收藏
github2024-08-30 更新2024-08-31 收录
无人机
多传感器集成
下载链接:
https://github.com/Printeger/SUG-UAV-Multirotor-Dataset-IPIN2024
下载链接
链接失效反馈
资源简介:
该无人机数据集旨在支持无人机研究,如高精度定位和动态校准。数据集分为两类,分别适用于不同的研究需求。第一类数据集包含室内运动捕捉室收集的视觉、惯性和电机编码器信息,提供由运动捕捉生成的准确地面真实数据,适用于研究无人机动力学模型。另一类数据集在多种复杂户外场景中收集,使用多传感器融合定位算法生成高精度地面真实轨迹,适用于无人机定位和复杂环境中的场景重建研究。总共提供了9个序列的数据集,每个序列的原始测量时间戳都经过良好同步和精确校准。
创建时间:
2024-08-28
原始信息汇总

SUG-UAV-Multirotor-Dataset-IPIN2024

简介

SUG-UAV Multirotor Dataset with Multi-sensor Integration in Indoor and Urban Areas

该无人机数据集旨在支持无人机研究,如高精度定位和动态校准。数据集分为两类,每部分针对不同的研究需求。第一类数据集包含在室内运动捕捉室收集的视觉、惯性和电机编码器信息。该数据集提供了由运动捕捉生成的准确地面真实数据,适用于研究无人机动力学模型。另一类数据在多种复杂户外场景中收集,使用多传感器融合定位算法生成高精度地面真实轨迹,可用于研究无人机在复杂环境中的定位和场景重建。总共提供了9个序列的数据集。特别地,每个序列中的原始测量时间戳已经过良好同步和精确校准。

无人机设置

<p align="center"> <img src="https://github.com/Printeger/SUG-UAV-Multirotor-Dataset-IPIN2024/blob/main/img/set1.png" height="300" /><img src="https://github.com/Printeger/SUG-UAV-Multirotor-Dataset-IPIN2024/blob/main/img/set2.png" height="300" /> </p>

数据收集环境

数据集在以下场景中收集: <p align="center"> <img src="https://github.com/Printeger/SUG-UAV-Multirotor-Dataset-IPIN2024/blob/main/img/scene.png" width="800" /> <figcaption>左:Polyu的运动捕捉室,中:香港科学园的环形交叉路口,右:PolyU的Hotel Icon的宴会厅</figcaption> </p>

数据集类别预览

类别 序列号 传感器 轨迹形状 长度/持续时间 地面真实数据
动态序列 Seq 1 相机/IMU/电机编码器 圆形 30.432米/27.050秒 运动捕捉
动态序列 Seq 2 相机/IMU/电机编码器 垂直椭圆形 18.568米/43.351秒 运动捕捉
动态序列 Seq 3 相机/IMU/电机编码器 鞍形 60.606米/59.366秒 运动捕捉
动态序列 Seq 4 相机/IMU/电机编码器 无限形 57.479米/110.784秒 运动捕捉
动态序列 Seq 5 相机/IMU/电机编码器 方形 45.070米/62.000秒 运动捕捉
动态序列 Seq 6 相机/IMU/电机编码器 自由形 71.004米/241.960秒 运动捕捉
LiDAR序列 Seq 7 LiDAR/IMU/UWB/GNSS 圆形 139.424米/136.903秒 LIO
LiDAR序列 Seq 8 LiDAR/IMU/UWB/GNSS 自由形 340.570米/452.999秒 GLIO
LiDAR序列 Seq 9 LiDATR/IMU 方形 76.317米/341.300秒 LIO
AI搜集汇总
数据集介绍
main_image_url
构建方式
该数据集的构建旨在支持无人机研究,特别是高精度定位和动态校准。数据集分为两类:室内运动捕捉室和复杂户外场景。室内部分通过视觉、惯性和电机编码器信息收集,利用运动捕捉系统生成精确的地面真实轨迹,适用于无人机动力学模型的研究。户外部分则在多样化的复杂环境中收集,采用多传感器融合定位算法生成高精度轨迹,适用于无人机定位和复杂环境中的场景重建研究。所有序列的原始测量时间戳均经过精确同步和校准。
特点
该数据集的显著特点在于其多传感器集成和场景多样性。室内部分提供由运动捕捉系统生成的精确地面真实轨迹,确保数据的高精度。户外部分则通过多传感器融合算法生成高精度轨迹,适应复杂环境的研究需求。此外,数据集中的时间戳同步和校准确保了数据的一致性和可靠性,为研究者提供了高质量的实验数据。
使用方法
使用该数据集时,研究者可以根据研究需求选择室内或户外数据序列。室内数据适用于无人机动力学模型和传感器校准研究,而户外数据则适用于复杂环境中的定位和场景重建。数据集提供了详细的传感器信息和轨迹形状,便于研究者进行数据分析和模型验证。通过访问提供的链接,研究者可以下载所需的数据序列,并利用同步和校准的时间戳进行进一步的实验和研究。
背景与挑战
背景概述
在无人机(UAV)技术迅速发展的背景下,SUG-UAV Multirotor Dataset with Multi-sensor Integration in Indoor and Urban Areas数据集应运而生,旨在支持高精度定位和动态校准等研究。该数据集由PolyU等机构的主要研究人员创建,分为室内和城市环境两类,分别收集了视觉、惯性、电机编码器和激光雷达等多传感器信息。室内部分利用动作捕捉系统生成精确的地面真实轨迹,适用于无人机动力学模型的研究;而城市部分则通过多传感器融合定位算法生成高精度轨迹,用于复杂环境下的定位和场景重建研究。该数据集的发布对无人机领域的研究具有重要推动作用。
当前挑战
该数据集在构建过程中面临多项挑战。首先,室内环境的动作捕捉系统需要高精度的同步和校准,以确保数据的准确性。其次,城市环境中的多传感器融合定位算法需处理复杂的环境变化和信号干扰,确保生成的高精度轨迹的可靠性。此外,数据集的多样性和复杂性要求研究人员在数据处理和分析过程中具备高度的专业知识和技能。这些挑战不仅考验了数据集构建的技术水平,也对其在实际应用中的效能提出了高要求。
常用场景
经典使用场景
在无人机研究领域,SUG-UAV Multirotor Dataset with Multi-sensor Integration in Indoor and Urban Areas 数据集的经典使用场景主要集中在高精度定位和动态校准方面。该数据集通过室内和城市复杂环境中的多传感器融合,提供了精确的轨迹数据,适用于研究无人机在不同环境下的定位精度和动态行为。例如,研究人员可以利用该数据集验证和优化多传感器融合算法,以提高无人机在复杂环境中的导航和定位能力。
实际应用
在实际应用中,SUG-UAV Multirotor Dataset with Multi-sensor Integration in Indoor and Urban Areas 数据集为无人机在室内和城市环境中的导航和定位提供了重要的支持。例如,在物流配送、建筑监测和紧急救援等领域,无人机需要具备高精度的定位能力。该数据集的实际应用场景包括但不限于无人机路径规划、环境感知和避障系统的开发,从而提升无人机在复杂环境中的操作效率和安全性。
衍生相关工作
基于SUG-UAV Multirotor Dataset with Multi-sensor Integration in Indoor and Urban Areas 数据集,衍生了一系列相关的经典工作。例如,研究人员利用该数据集开发了新的多传感器融合算法,显著提高了无人机在复杂环境中的定位精度。此外,该数据集还促进了无人机动力学模型的优化研究,推动了无人机在不同应用场景中的性能提升。这些衍生工作不仅丰富了无人机研究的理论基础,也为实际应用提供了强有力的技术支持。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

DAT

DAT是一个统一的跨场景跨领域基准,用于开放世界无人机主动跟踪。它提供了24个视觉复杂的场景,以评估算法的跨场景和跨领域泛化能力,并具有高保真度的现实机器人动力学建模。

github 收录

LibriSpeech

LibriSpeech 是一个大约 1000 小时的 16kHz 英语朗读语音语料库,由 Vassil Panayotov 在 Daniel Povey 的协助下编写。数据来自 LibriVox 项目的已读有声读物,并经过仔细分割和对齐。

OpenDataLab 收录