SUG-UAV Multirotor Dataset with Multi-sensor Integration in Indoor and Urban Areas|无人机数据集|多传感器集成数据集
收藏SUG-UAV-Multirotor-Dataset-IPIN2024
简介
SUG-UAV Multirotor Dataset with Multi-sensor Integration in Indoor and Urban Areas
该无人机数据集旨在支持无人机研究,如高精度定位和动态校准。数据集分为两类,每部分针对不同的研究需求。第一类数据集包含在室内运动捕捉室收集的视觉、惯性和电机编码器信息。该数据集提供了由运动捕捉生成的准确地面真实数据,适用于研究无人机动力学模型。另一类数据在多种复杂户外场景中收集,使用多传感器融合定位算法生成高精度地面真实轨迹,可用于研究无人机在复杂环境中的定位和场景重建。总共提供了9个序列的数据集。特别地,每个序列中的原始测量时间戳已经过良好同步和精确校准。
无人机设置
<p align="center"> <img src="https://github.com/Printeger/SUG-UAV-Multirotor-Dataset-IPIN2024/blob/main/img/set1.png" height="300" /><img src="https://github.com/Printeger/SUG-UAV-Multirotor-Dataset-IPIN2024/blob/main/img/set2.png" height="300" /> </p>
数据收集环境
数据集在以下场景中收集: <p align="center"> <img src="https://github.com/Printeger/SUG-UAV-Multirotor-Dataset-IPIN2024/blob/main/img/scene.png" width="800" /> <figcaption>左:Polyu的运动捕捉室,中:香港科学园的环形交叉路口,右:PolyU的Hotel Icon的宴会厅</figcaption> </p>
数据集类别预览
| 类别 | 序列号 | 传感器 | 轨迹形状 | 长度/持续时间 | 地面真实数据 |
|---|---|---|---|---|---|
| 动态序列 | Seq 1 | 相机/IMU/电机编码器 | 圆形 | 30.432米/27.050秒 | 运动捕捉 |
| 动态序列 | Seq 2 | 相机/IMU/电机编码器 | 垂直椭圆形 | 18.568米/43.351秒 | 运动捕捉 |
| 动态序列 | Seq 3 | 相机/IMU/电机编码器 | 鞍形 | 60.606米/59.366秒 | 运动捕捉 |
| 动态序列 | Seq 4 | 相机/IMU/电机编码器 | 无限形 | 57.479米/110.784秒 | 运动捕捉 |
| 动态序列 | Seq 5 | 相机/IMU/电机编码器 | 方形 | 45.070米/62.000秒 | 运动捕捉 |
| 动态序列 | Seq 6 | 相机/IMU/电机编码器 | 自由形 | 71.004米/241.960秒 | 运动捕捉 |
| LiDAR序列 | Seq 7 | LiDAR/IMU/UWB/GNSS | 圆形 | 139.424米/136.903秒 | LIO |
| LiDAR序列 | Seq 8 | LiDAR/IMU/UWB/GNSS | 自由形 | 340.570米/452.999秒 | GLIO |
| LiDAR序列 | Seq 9 | LiDATR/IMU | 方形 | 76.317米/341.300秒 | LIO |

中国近海台风路径集合数据集(1945-2024)
1945-2024年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。时间为北京时间。
国家海洋科学数据中心 收录
OpenECG
OpenECG是一个包含来自九个中心共120万份12导联ECG记录的大型基准数据集,用于评估基于公开数据集训练的ECG基础模型。该数据集整合了多个公开可用的12导联ECG数据集,涵盖了483,837名患者的1,233,337份ECG记录,包括临床诊断标注和自监督学习的未标注原始信号。
arXiv 收录
TCM-Tongue
TCM-Tongue是一个专门用于人工智能辅助中医舌诊的标准化舌像数据集,包含6719张在标准化条件下捕获的高质量图像,并标注了20种病理症状类别(平均每张图像有2.54个经过临床验证的标签,所有标签均由持有执照的中医执业医师验证)。数据集支持多种标注格式(COCO、TXT、XML),以方便广泛使用,并使用九种深度学习模型进行了基准测试,以展示其在人工智能开发中的实用性。该资源为推进可靠的中医计算工具提供了关键基础,填补了该领域的数据短缺,并通过标准化、高质量的诊断数据促进了人工智能在研究和临床实践中的整合。
arXiv 收录
PTB-Image
PTB-Image是一个包含扫描纸质心电图和相应数字信号的综合数据集,由越南河内VinUniversity College of Engineering and Computer Science和VinUni-Illinois Smart Health Center创建。该数据集旨在推动心电图数字化技术的研究,包含549个记录,每个记录由一位至五位患者的15个同步心电图信号组成,涵盖标准12导联心电图和Frank导联。数据集通过扫描原始PTB数据集的纸质心电图并打印部分信号制作而成,可用于心电图数字化、自动诊断及远程医疗等领域的应用研究。
arXiv 收录
OpenSonarDatasets
OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。
github 收录
