five

Multi-sensor, Multi-device Smart Building Indoor Environmental Dataset|智能建筑数据集|物联网数据集

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
智能建筑
物联网
下载链接:
https://data.bris.ac.uk/data/dataset/fwlmb11wni392kodtyljkw4n2/
下载链接
链接失效反馈
资源简介:
SYNERGIA, funded by Innovate UK, aimed to improve privacy and reduce latency in IoT platforms by enhancing the security and resilience of industrial IoT devices, enabling the development of future networks. It moves some computation to the Edge to address privacy and scalability issues of the current cloud-based IoT platforms. During the project, to collect real-world data, we deployed an end-to-end IoT network in an office used by research staff at the University of Bristol. The office is actively used by a significant number of academic personnel and students (max occupancy of 28 people). It gets exposed to environmental changes such as seasonal temperature, humidity, and light fluctuations. The endpoints are located in different locations in the lab to collect varying data due to differentiation between the areas. The network consists of eight stationary, severely resource-constrained IoT endpoints, an additional device called Umbrella acting as the “edge”, and a server for data collection and controlling the experiment. Each IoT endpoint hosts sensors providing temperature, humidity, pressure, gas, accelerometer, and light readings. We collected two additional pieces of information: the measurements’ accuracy value, calculated by the environmental sensors, and the received signal strength indicator(RSSI). The data was acquired using several sensors in a smart building/office environment. The sensors were integrated into an IoT Nordic nRF52840 DK board endpoint as follows: (1) "ISL29125" Light Sensors: Collects intensity of the light. (2) "MMA8452Q" Accelerometer Sensors. (3) "BME680" Environmental Digital Sensors: Comprise of gas (VOC/ CO₂), pressure, temperature, and humidity sensors. The experiment started in February 2022. We stored over six months (February - September 2022) of sensor readings for experimental reasons, in CSV file format. This repository provides the following. Raw environmental sensor data from a deployment in an indoor office area.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

MOOCs Dataset

该数据集包含了大规模开放在线课程(MOOCs)的相关数据,包括课程信息、用户行为、学习进度等。数据主要用于研究在线教育的行为模式和学习效果。

www.kaggle.com 收录

LibriSpeech

LibriSpeech 是一个大约 1000 小时的 16kHz 英语朗读语音语料库,由 Vassil Panayotov 在 Daniel Povey 的协助下编写。数据来自 LibriVox 项目的已读有声读物,并经过仔细分割和对齐。

OpenDataLab 收录

Solar Radiation Data

该数据集包含全球多个地点的太阳辐射数据,涵盖了不同时间段和气象条件下的辐射强度。数据包括直接辐射、散射辐射和总辐射等指标,适用于太阳能资源评估和气候研究。

www.nrel.gov 收录

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录

中国知识产权局专利数据库

该数据集包含了中国知识产权局发布的专利信息,涵盖了专利的申请、授权、转让等详细记录。数据内容包括专利号、申请人、发明人、申请日期、授权日期、专利摘要等。

www.cnipa.gov.cn 收录