five

Effects of weather parameters on endurance running performance|体育科学数据集|天气影响数据集

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
体育科学
天气影响
下载链接:
https://figshare.com/articles/dataset/Effects_of_weather_parameters_on_endurance_running_performance/14753565/1
下载链接
链接失效反馈
资源简介:
The aim of the analysis was to evaluate how single or combinations of weather parameters (temperature, humidity, wind speed, solar load) affect peak performance during endurance running events and identify which events are most vulnerable to varying weather conditions. Results for the marathon, 50 km race-walk, 20 km race-walk, 10,000 m, 5,000 m and 3,000 m-steeplechase were obtained from the official websites of the largest competitions in the world. Finish times for all races were collected from the first year of each competition for which data were available online until the end of 2019. The collection of these data was completed between February 2016 and September 2020 We obtained the date, time, and location for each race from its official website while the relevant longitude and latitude were obtained from www.locationiq.com. Weather data (air temperature, dew point, wind speed, and cloud coverage) corresponding to the time at half-way in each race were obtained from the closest meteorological station using the official dataset of the National Oceanic and Atmospheric Administration (www.ncei.noaa.gov/data/global-hourly). In cases where these data were not available, we retrieved the information from widely-used meteorology websites (www.wunderground.com and www.weatherspark.com). Wind speed was adjusted for height above the ground and air friction coefficient (i.e., large city with tall buildings). Dew point data were converted to relative humidity. For cases where cloud coverage was not available in the National Oceanic and Atmospheric Administration datasets, the cloud coverage (in okta) was computed using relative humidity data based on previous methodology and applying coefficients of 0.25 for low and high as well as 0.5 for middle clouds, as previously suggested. Solar radiation was calculated using the date, time, and coordinates of each race, while accounting for cloud coverage. Thereafter, the Heat Index, Simplified WBGT and WBGT, were calculated using previous methodology.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录

AgiBot World

为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。

github 收录

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

HIT-UAV

HIT-UAV数据集包含2898张红外热成像图像,这些图像从43,470帧无人机拍摄的画面中提取。数据集涵盖了多种场景,如学校、停车场、道路和游乐场,在不同的光照条件下,包括白天和夜晚。

github 收录

Materials Project

材料项目是一组标有不同属性的化合物。数据集链接: MP 2018.6.1(69,239 个材料) MP 2019.4.1(133,420 个材料)

OpenDataLab 收录