five

GS-Blur|图像去模糊数据集|图像处理数据集

收藏
arXiv2024-10-31 更新2024-11-02 收录
图像去模糊
图像处理
下载链接:
https://github.com/dongwoohhh/GS-Blur
下载链接
链接失效反馈
资源简介:
GS-Blur数据集是由首尔国立大学创建的一个用于真实图像去模糊的3D场景数据集。该数据集通过3D高斯喷射(3DGS)技术从多视角图像中重建3D场景,并沿随机生成的运动轨迹渲染模糊图像,从而生成大量真实且多样化的模糊图像。数据集包含156209条数据,涵盖了多种模糊类型和轨迹,旨在解决现有数据集在模糊多样性和真实性方面的不足。GS-Blur数据集的应用领域主要集中在图像去模糊技术,旨在提高去模糊网络在真实世界模糊图像上的泛化能力。
提供机构:
首尔国立大学
创建时间:
2024-10-31
AI搜集汇总
数据集介绍
main_image_url
构建方式
GS-Blur数据集通过一种创新的方法构建,利用3D高斯喷射(3DGS)技术从多视角图像中重建3D场景。首先,从现有的多视角数据集MVImgNet中选择图像,训练3DGS模型以重建3D场景。随后,通过在随机生成的运动轨迹上移动相机视图,从这些重建的3D场景中渲染出模糊图像。这种方法不仅避免了传统数据集在捕捉真实模糊时的局限性,还通过多样化的相机轨迹生成了更加真实和多样的模糊类型。
使用方法
GS-Blur数据集适用于训练各种去模糊网络,特别是那些需要大量多样化模糊图像的深度学习模型。使用者可以通过下载数据集并按照提供的训练协议进行模型训练。数据集包含了清晰图像和对应的模糊图像对,以及详细的构建方法和参数设置,确保研究者能够复现实验结果并进行进一步的研究。
背景与挑战
背景概述
GS-Blur数据集由首尔国立大学的Dongwoo Lee、Joonkyu Park和Kyoung Mu Lee等人于2024年提出,旨在解决现有图像去模糊数据集在模糊类型多样性和真实世界模糊场景反映不足的问题。该数据集通过3D高斯喷射(3DGS)技术,从多视角图像中重建3D场景,并沿随机生成的运动轨迹渲染模糊图像,从而生成具有高度真实感和多样性的模糊图像。GS-Blur数据集的提出,不仅丰富了模糊图像的类型,还显著提升了去模糊网络在真实世界模糊图像上的泛化能力,对图像恢复领域具有重要影响。
当前挑战
GS-Blur数据集在构建过程中面临多项挑战。首先,现有数据集主要通过合成或复杂相机系统收集模糊图像,这些方法在模糊类型(模糊轨迹)的多样性上存在局限,或需要大量人力重建大规模数据集,无法全面反映真实世界的模糊场景。其次,合成模糊图像的方法依赖于高帧率相机捕捉连续清晰帧,通过聚合这些帧生成模糊图像,但这种模糊与真实世界模糊存在差异,泛化能力有限。此外,使用分光镜相机系统生成更真实的模糊图像,虽然适用于实际应用,但需要精确的相机系统设计,且依赖特定相机模型,限制了其通用性。GS-Blur通过创新的3D场景重建和渲染方法,有效克服了这些挑战,提供了更具泛化能力的去模糊数据集。
常用场景
经典使用场景
GS-Blur数据集的经典使用场景主要集中在图像去模糊任务中。通过利用3D高斯喷射技术(3DGS)从多视角图像中重建3D场景,并沿着随机生成的运动轨迹渲染模糊图像,该数据集提供了大量真实且多样化的模糊图像对。这些图像对被广泛用于训练深度神经网络,以提高其在真实世界模糊图像上的去模糊性能。
解决学术问题
GS-Blur数据集解决了现有去模糊数据集在模糊类型多样性和真实性方面的不足。传统数据集要么通过合成方法生成模糊图像,要么使用复杂的相机系统捕捉真实模糊,但这些方法在模糊轨迹的多样性或数据集规模上存在局限。GS-Blur通过模拟真实世界的模糊场景,提供了更广泛和多样化的模糊类型,有助于提升去模糊算法在实际应用中的泛化能力。
实际应用
GS-Blur数据集在实际应用中具有广泛的前景,特别是在需要高质量图像恢复的领域,如监控系统、自动驾驶和医学成像。通过提供真实且多样化的模糊图像对,该数据集能够有效训练和验证去模糊算法,从而在实际场景中实现更精确的图像恢复,提升系统的整体性能和可靠性。
数据集最近研究
最新研究方向
在图像去模糊领域,GS-Blur数据集的最新研究方向主要集中在通过3D场景重建技术生成高度逼真的模糊图像。该数据集通过3D高斯喷射(3DGS)技术,从多视角图像中重建3D场景,并沿随机生成的运动轨迹渲染模糊图像,从而解决了现有数据集在模糊类型多样性和真实性方面的局限。GS-Blur数据集不仅提供了大规模的模糊图像,还通过多种相机轨迹和分辨率增强了数据集的多样性,使其在训练去模糊网络时表现出更好的泛化能力。此外,该数据集还引入了噪声添加和多分辨率渲染等技术,进一步提升了去模糊效果在真实世界图像中的适用性。
相关研究论文
  • 1
    GS-Blur: A 3D Scene-Based Dataset for Realistic Image Deblurring首尔国立大学 · 2024年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录

ShapeNet

ShapeNet 是由斯坦福大学、普林斯顿大学和美国芝加哥丰田技术研究所的研究人员开发的大型 3D CAD 模型存储库。该存储库包含超过 3 亿个模型,其中 220,000 个模型被分类为使用 WordNet 上位词-下位词关系排列的 3,135 个类。 ShapeNet Parts 子集包含 31,693 个网格,分为 16 个常见对象类(即桌子、椅子、平面等)。每个形状基本事实包含 2-5 个部分(总共 50 个部分类)。

OpenDataLab 收录

中国近海地形数据集(渤海,黄海,东海,南海)

本数据集包含历年来通过收集和实测方法取得的中国近海水深点数据、地形图数据(ArcGIS格式),以及黄河口、莱州湾东部、辽东湾、山东南部沿海、南海部分海域的单波束、多波束水深测量数据,包括大尺度的低密度水深数据与局部高密度水深数据。

地球大数据科学工程 收录

CODrone

CODrone 是一个为无人机设计的全面定向目标检测数据集,它准确反映了真实世界条件。该数据集包含来自多个城市在不同光照条件下的广泛标注图像,增强了基准的逼真度。CODrone 包含超过 10,000 张高分辨率图像,捕获自五个城市的真实无人机飞行,涵盖了各种城市和工业环境,包括港口和码头。为了提高鲁棒性和泛化能力,它包括在正常光线、低光和夜间条件下相同场景的图像。我们采用了三种飞行高度和两种常用的相机角度,从而产生了六个不同的视角配置。所有图像都针对 12 个常见对象类别进行了定向边界框标注,总计超过 590,000 个标记实例。总体而言,这项工作构建了一个综合数据集和基准,用于城市无人机场景中的定向目标检测,旨在满足该领域的研究和实践应用需求。

arXiv 收录

VEDAI

用于训练YOLO模型的VEDAI数据集,包含图像和标签,用于目标检测和跟踪。

github 收录