five

Japan Statistical Yearbook|社会经济统计数据集|日本数据集

收藏
www.stat.go.jp2024-10-24 收录
社会经济统计
日本
下载链接:
https://www.stat.go.jp/english/data/nenkan/
下载链接
链接失效反馈
资源简介:
Japan Statistical Yearbook 是日本政府每年发布的一份综合性统计年鉴,涵盖了日本社会、经济、人口、环境等多个领域的统计数据。该年鉴提供了详细的统计表格、图表和分析,是研究日本社会经济发展的重要参考资料。
提供机构:
www.stat.go.jp
AI搜集汇总
数据集介绍
main_image_url
构建方式
Japan Statistical Yearbook数据集的构建基于日本政府统计局(Statistics Bureau of Japan)的年度统计工作。该数据集汇集了日本国内各领域的统计数据,包括但不限于人口、经济、社会、环境和科技等方面。数据来源涵盖了政府各部门、地方自治体以及各类调查和普查结果。通过严格的审核和校对流程,确保数据的准确性和可靠性。
特点
Japan Statistical Yearbook数据集以其全面性和权威性著称。该数据集不仅涵盖了广泛的统计指标,还提供了详细的时间序列数据,便于进行长期趋势分析。此外,数据集的结构化设计使得用户能够轻松地进行数据检索和分析。其多语言支持(包括日语和英语)进一步增强了其国际适用性。
使用方法
Japan Statistical Yearbook数据集适用于各类研究者和政策制定者。用户可以通过访问日本政府统计局的官方网站或相关数据库平台获取数据。数据集提供了多种下载格式,包括CSV、Excel和PDF,方便用户根据需求选择。此外,数据集还附有详细的元数据和使用指南,帮助用户理解和应用数据。
背景与挑战
背景概述
Japan Statistical Yearbook(日本统计年鉴)是由日本政府统计局(Statistics Bureau of Japan)编制并发布的年度统计数据集,自1947年首次发布以来,已成为研究日本社会经济状况的重要参考资料。该数据集涵盖了广泛的主题,包括人口、经济、教育、健康、环境等多个领域,为政策制定者、研究人员和公众提供了全面的数据支持。其核心研究问题在于通过系统的数据收集和分析,揭示日本社会经济的发展趋势和结构变化,从而为政策优化和社会发展提供科学依据。
当前挑战
尽管Japan Statistical Yearbook提供了丰富的数据资源,但其构建过程中仍面临诸多挑战。首先,数据收集的广泛性和复杂性要求高度的协调和精确性,以确保数据的准确性和一致性。其次,随着社会经济环境的快速变化,数据集需要不断更新和扩展,以反映最新的发展动态。此外,数据的可访问性和使用便捷性也是一个重要问题,尤其是在数据量庞大且格式多样的情况下,如何有效管理和分发数据成为了一个亟待解决的挑战。
发展历史
创建时间与更新
Japan Statistical Yearbook数据集的创建可追溯至1947年,由日本统计局发布,旨在提供全面的国家统计数据。该数据集每年更新一次,确保数据的时效性和准确性。
重要里程碑
该数据集的重要里程碑包括1960年首次电子化数据的发布,标志着数据处理技术的重大进步。1980年代,随着计算机技术的普及,数据集的更新频率和数据量显著增加,为研究者和政策制定者提供了更为丰富的信息资源。2000年后,数据集开始提供在线访问,极大地提升了数据的可及性和利用率。
当前发展情况
当前,Japan Statistical Yearbook数据集已成为日本社会经济研究的重要基石,涵盖了人口、经济、教育、环境等多个领域。其数据被广泛应用于学术研究、政策分析和商业决策中,对推动日本社会经济的发展起到了关键作用。随着大数据和人工智能技术的发展,该数据集也在不断优化其数据结构和访问方式,以适应新时代的需求。
发展历程
  • 日本统计局首次发布《Japan Statistical Yearbook》,标志着该数据集的诞生。
    1947年
  • 数据集首次引入国民经济核算体系,为日本经济研究提供了重要数据支持。
    1950年
  • 数据集开始涵盖更广泛的统计领域,包括人口、就业、教育等,数据内容进一步丰富。
    1960年
  • 数据集首次采用计算机技术进行数据处理,提高了数据处理的效率和准确性。
    1970年
  • 数据集开始提供英文版本,促进了国际学术界对日本统计数据的研究和应用。
    1980年
  • 数据集引入更多社会经济指标,如环境统计和科技统计,数据覆盖面进一步扩大。
    1990年
  • 数据集开始通过互联网发布,提高了数据的可访问性和透明度。
    2000年
  • 数据集进一步整合了地理信息系统(GIS)数据,增强了空间分析能力。
    2010年
  • 数据集开始采用大数据和人工智能技术,提升了数据分析的深度和广度。
    2020年
常用场景
经典使用场景
在日本经济与社会研究领域,Japan Statistical Yearbook数据集被广泛用于分析和预测国家层面的宏观经济指标。该数据集涵盖了从人口统计、劳动力市场到国民收入和支出等多个维度的详细信息,为学者和政策制定者提供了全面的数据支持。通过这些数据,研究人员能够深入探讨日本经济结构的变化趋势,以及社会发展中的关键问题。
解决学术问题
Japan Statistical Yearbook数据集在解决日本经济与社会研究中的多个学术问题上发挥了重要作用。例如,通过分析人口老龄化趋势,学者们能够预测未来劳动力市场的变化,并为政策制定提供依据。此外,该数据集还帮助研究者评估不同经济政策的效果,从而推动理论与实践的结合。其详尽的数据记录为跨学科研究提供了坚实的基础,促进了学术界对日本社会经济现象的深入理解。
衍生相关工作
基于Japan Statistical Yearbook数据集,许多经典研究工作得以展开。例如,有学者利用该数据集分析了日本经济泡沫前后的社会经济变化,为理解经济危机提供了重要视角。此外,该数据集还催生了关于日本人口老龄化对经济影响的系列研究,推动了相关领域的理论发展。这些衍生工作不仅丰富了学术研究,也为实际应用提供了有力的理论支持。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

ROBEL

ROBEL是一个开源的低成本机器人平台,专为现实世界的强化学习设计。该平台由谷歌研究院和加州大学伯克利分校共同开发,包含两个机器人:D'Claw,一个三指手机器人,用于促进精细操作任务的学习;D'Kitty,一个四足机器人,用于促进敏捷的腿式移动任务学习。这些模块化机器人易于维护且足够坚固,能够承受从零开始的硬件强化学习,目前已记录超过14000小时的训练时间。ROBEL提供了一系列连续控制基准任务,这些任务具有密集和稀疏的任务目标,并引入了硬件安全评分指标。数据集和相关材料可在www.roboticsbenchmarks.org访问,旨在解决强化学习在真实机器人上的应用问题,特别是在处理物理限制和环境交互方面的挑战。

arXiv 收录

PCLT20K

PCLT20K数据集是由湖南大学等机构创建的一个大规模PET-CT肺癌肿瘤分割数据集,包含来自605名患者的21,930对PET-CT图像,所有图像都带有高质量的像素级肿瘤区域标注。该数据集旨在促进医学图像分割研究,特别是在PET-CT图像中肺癌肿瘤的分割任务。

arXiv 收录

Solar Radiation Data

该数据集包含全球多个地点的太阳辐射数据,涵盖了不同时间段和气象条件下的辐射强度。数据包括直接辐射、散射辐射和总辐射等指标,适用于太阳能资源评估和气候研究。

www.nrel.gov 收录

NIST Thermochemical Database

NIST Thermochemical Database(NIST热化学数据库)是一个包含大量热化学数据的数据集,涵盖了各种化学物质的热力学性质,如焓、熵、自由能等。该数据库由美国国家标准与技术研究院(NIST)维护,旨在为科学研究和工业应用提供准确的热化学数据。

webbook.nist.gov 收录

Obstacle-dataset OD

该数据集用于十五种障碍物检测,包含VOC格式和YOLO训练的.txt文件,数据集中的图像来自VOC数据集、COCO数据集、TT100K数据集以及作者团队实地收集的图片。

github 收录