five

NOAA Global Surface Temperature Dataset|气候变化数据集|温度监测数据集

收藏
www.ncei.noaa.gov2024-10-25 收录
气候变化
温度监测
下载链接:
https://www.ncei.noaa.gov/access/monitoring/global-temperature-anomalies/
下载链接
链接失效反馈
资源简介:
该数据集包含了全球地表温度的观测数据,涵盖了从1880年至今的月度温度记录。数据集提供了全球、区域和单个站点的温度异常值,用于分析气候变化趋势。
提供机构:
www.ncei.noaa.gov
AI搜集汇总
数据集介绍
main_image_url
构建方式
NOAA Global Surface Temperature Dataset的构建基于全球范围内的气象站观测数据,涵盖了从1880年至今的每日、每月和每年的地表温度记录。数据集通过整合来自不同气象站的数据,采用标准化处理方法,以确保数据的一致性和准确性。此外,该数据集还应用了空间插值技术,填补了数据缺失区域,从而提供了全球范围内的温度分布图。
使用方法
NOAA Global Surface Temperature Dataset可用于多种气候科学研究,包括但不限于全球变暖趋势分析、季节性温度变化研究以及极端天气事件的频率和强度评估。研究人员可以通过NOAA的官方网站或相关数据共享平台获取该数据集,并利用统计分析软件、地理信息系统(GIS)工具以及气候模型进行数据处理和分析。此外,该数据集还支持与其他气候数据集的集成分析,以提供更全面的气候变化视角。
背景与挑战
背景概述
NOAA Global Surface Temperature Dataset(NOAA全球地表温度数据集)由美国国家海洋和大气管理局(NOAA)创建,旨在提供全球范围内地表温度的详细记录。该数据集自19世纪末开始收集,涵盖了全球数千个气象站的数据,成为气候变化研究的重要基石。主要研究人员和机构包括NOAA的气候监测中心,其核心研究问题集中在地表温度的长期变化趋势及其对全球气候系统的影响。该数据集不仅为气候模型提供了关键输入,还为政策制定者提供了科学依据,推动了全球气候变化应对策略的发展。
当前挑战
NOAA Global Surface Temperature Dataset在解决全球气候变化问题方面面临多项挑战。首先,数据集的构建过程中需处理来自不同气象站的历史数据,这些数据在测量方法和设备上存在差异,导致数据一致性问题。其次,全球气候系统的复杂性使得温度数据的解读和预测变得极为复杂,需要高精度的模型和算法来分析。此外,数据集的更新频率和覆盖范围也需不断优化,以确保其能够准确反映当前气候变化的趋势。这些挑战要求研究者不断创新,以提高数据集的可靠性和应用价值。
发展历史
创建时间与更新
NOAA Global Surface Temperature Dataset由美国国家海洋和大气管理局(NOAA)于1981年首次发布,旨在提供全球地表温度的长期记录。该数据集定期更新,最新版本涵盖了截至2023年的数据,确保了其时效性和准确性。
重要里程碑
NOAA Global Surface Temperature Dataset的一个重要里程碑是其在1999年引入的全球历史气候网络(GHCN)数据集,这一更新极大地扩展了数据集的覆盖范围和精度。此外,2012年,NOAA发布了全球地表温度分析(GISTEMP),进一步提升了数据集的全球影响力。这些里程碑不仅增强了数据集的科学价值,还为全球气候变化研究提供了坚实的基础。
当前发展情况
当前,NOAA Global Surface Temperature Dataset已成为全球气候研究的核心数据源之一。其持续的更新和扩展,确保了数据集在气候模型、气候变化趋势分析以及极端天气事件研究中的关键作用。通过与其他国际气候数据集的整合,如HadCRUT和Berkeley Earth,NOAA的数据集进一步提升了全球气候科学研究的协同效应。此外,该数据集的开放获取政策,促进了全球科学界对气候变化问题的深入理解和应对策略的制定。
发展历程
  • NOAA Global Surface Temperature Dataset首次发布,标志着全球气温记录的开始。
    1880年
  • NOAA发布了全球历史气候网络(GHCN)数据集,整合了全球多个气象站的数据,显著提升了数据集的覆盖范围和精度。
    1999年
  • NOAA推出了全球陆地-海洋温度指数(Global Land-Ocean Temperature Index),该指数综合了陆地和海洋表面的温度数据,提供了更全面的全球温度变化趋势。
    2005年
  • NOAA发布了全球温度异常数据集(Global Temperature Anomalies Dataset),该数据集提供了逐月和逐年的全球温度异常值,为气候变化研究提供了重要数据支持。
    2012年
  • NOAA更新了其全球温度数据集,引入了新的数据校正方法,进一步提高了数据集的准确性和可靠性。
    2017年
  • NOAA发布了全球温度数据集的最新版本,该版本包含了更长时间跨度的数据,并采用了最新的数据处理技术,为全球气候变化研究提供了更为详尽的数据支持。
    2020年
常用场景
经典使用场景
在全球气候变化研究领域,NOAA全球地表温度数据集(NOAA Global Surface Temperature Dataset)被广泛应用于分析和预测地表温度的长期趋势。该数据集通过整合全球多个气象站的历史温度记录,提供了从1880年至今的月度和年度地表温度数据。研究者利用这些数据进行气候模型验证、极端天气事件分析以及全球变暖趋势的量化研究,从而为气候科学提供了坚实的基础。
解决学术问题
NOAA全球地表温度数据集在解决气候变化相关的学术研究问题中发挥了关键作用。通过提供高精度的历史温度数据,该数据集帮助科学家们验证了全球变暖的理论,并揭示了不同地区温度变化的差异性。此外,它还为研究气候变化对生态系统、农业生产和人类健康的影响提供了重要的数据支持,推动了气候科学的发展和相关政策的制定。
实际应用
在实际应用中,NOAA全球地表温度数据集被广泛用于气象预报、农业规划和灾害预警等领域。例如,农业部门利用该数据集分析温度变化对作物生长周期的影响,从而优化种植策略。气象部门则通过分析历史温度数据,提高极端天气事件的预测准确性,为公众提供更及时的预警信息。此外,该数据集还为全球气候政策的制定提供了科学依据,促进了国际间的气候合作。
数据集最近研究
最新研究方向
在全球气候变化研究领域,NOAA Global Surface Temperature Dataset作为核心数据集,其最新研究方向聚焦于高分辨率温度变化模式的识别与预测。研究者们利用先进的机器学习算法和大数据分析技术,深入挖掘该数据集中的细微温度波动,以期更准确地捕捉气候变化的非线性特征。此外,跨学科的合作研究也在不断推进,结合地理信息系统和遥感数据,探索温度变化与生态系统响应之间的复杂关系,为全球气候政策的制定提供科学依据。
相关研究论文
  • 1
    NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid)National Oceanic and Atmospheric Administration (NOAA) · 2016年
  • 2
    Global Surface Temperature Variations and Their Implications for Climate ChangeUniversity of California, Berkeley · 2021年
  • 3
    Assessing the Impact of Climate Change on Global Surface Temperatures Using NOAA DataMassachusetts Institute of Technology (MIT) · 2020年
  • 4
    Long-term Trends in Global Surface Temperatures: A Comprehensive Analysis Using NOAA DataUniversity of Washington · 2019年
  • 5
    Spatial and Temporal Variability of Global Surface Temperatures: Insights from NOAA DataNational Center for Atmospheric Research (NCAR) · 2018年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

猫狗图像数据集

该数据集包含猫和狗的图像,每类各12500张。训练集和测试集分别包含10000张和2500张图像,用于模型的训练和评估。

github 收录

Fruits-360

一个高质量的水果图像数据集,包含多种水果的图像,如苹果、香蕉、樱桃等,总计42345张图片,分为训练集和验证集,共有64个水果类别。

github 收录

poi

本项目收集国内POI兴趣点,当前版本数据来自于openstreetmap。

github 收录

中亚主要国家的原油资源的储量、产量、消费量及其占世界比重(1985-2016)

中亚五国中,石油资源主要分布在哈萨克斯坦、乌兹别克斯坦、土库曼斯坦三个国家。根据BP世界能源统计年鉴,经整理、抽取、计算和汇总后,形成中亚主要国家(哈萨克斯坦、乌兹别克斯坦、土库曼斯坦)原油资源的储量、产量、消费量及其占世界比重的统计表。 主要指标包括: (1)储量,1991-2016年,单位:百万吨 (2)产量,1985-2016年,单位:百万吨 (3)储产比,1991-2016年,单位:百万吨 (4)消费量,1985-2016年,单位:百万吨 (5)产消差额,1985-2016年,单位:百万吨 此外,以上数据均包括中亚地区的哈萨克斯坦、乌兹别克斯坦、土库曼斯坦、三国汇总以及世界总量的情况。

地球大数据科学工程 收录