five

Coordination, cooperation and collaboration in logistics and supply chains: a bibliometric analysis|供应链管理数据集|文献计量分析数据集

收藏
DataCite Commons2020-08-26 更新2024-07-27 收录
供应链管理
文献计量分析
下载链接:
https://scielo.figshare.com/articles/Coordination_cooperation_and_collaboration_in_logistics_and_supply_chains_a_bibliometric_analysis/8987096/1
下载链接
链接失效反馈
资源简介:
Abstract Paper aims This paper identifies, evaluates and structures the research that focuses on supply chain coordination, cooperation and collaboration (CCC) within the domain of production economics and reveals its intellectual foundation. Originality The paper develops a distinct CCC-model, which enables a clear distinction between the elements of CCC based on five criteria. Afterwards, it presents the most influential papers and authors when it comes to CCC in supply chain production economics research. It also provides a visualised intellectual structure of five citation subfields and their interrelations. Research method Based on the reference list of more than 270 CCC-related papers, the authors perform a citation and co-citation analysis of the 47 most frequently cited papers in one selected academic journal. This analysis included multidimensional scaling, factor analysis as well as cluster analysis. Main findings The study reveals the intellectual base of CCC in a production economic-specific research domain, which reflects coordination only. The citation clusters represent different aspects of supply chain coordination mechanisms such as contractual agreements, information sharing and buyer-vendor integration. One subfield represents methodological aspects. Implications for theory and practice Neither cooperation nor collaboration related sources were identified in the most frequently used papers which certainly offers a research gap that needs to be closed in the future.
提供机构:
SciELO journals
创建时间:
2019-07-24
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

CAP-DATA

CAP-DATA数据集由长安大学交通学院的研究团队创建,包含11,727个交通事故视频,总计超过2.19百万帧。该数据集不仅标注了事故发生的时间窗口,还提供了详细的文本描述,包括事故前的实际情况、事故类别、事故原因和预防建议。数据集的创建旨在通过结合视觉和文本信息,提高交通事故预测的准确性和解释性,从而支持更安全的驾驶决策系统。

arXiv 收录

典型分布式光伏出力预测数据集

光伏电站出力数据每5分钟从电站机房监控系统获取;气象实测数据从气象站获取,气象站建于电站30号箱变附近,每5分钟将采集的数据通过光纤传输到机房;数值天气预报数据利用中国电科院新能源气象应用机房的WRF业务系统(包括30TF计算刀片机、250TB并行存储)进行中尺度模式计算后输出预报产品,每日8点前通过反向隔离装置推送到电站内网预测系统。

国家基础学科公共科学数据中心 收录

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录

AgiBot World

为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。

github 收录