five

Covid-19 Go Away 2021 (C-19GA21)|Covid-19教育影响数据集|在线教育数据集

收藏
Mendeley Data2024-03-27 更新2024-06-27 收录
Covid-19教育影响
在线教育
下载链接:
https://data.mendeley.com/datasets/99hx2xg7gx
下载链接
链接失效反馈
资源简介:
A Google Form was floated via social media platforms to collect data from teachers from 28 March 2021 to 28 April 2021. These teachers had been teaching online for the past one year during Covid-19. Another Google Form was similarly floated via social media platforms to collect data from students from 4 April 2021 to 26 April 2021. These students had been attending online classes for the past one year during Covid-19. The surveys were responded to by 709 students and 420 teachers across various states of India from a variety of institutes and belonging to various age groups. After removing records of individuals who did not wish to participate, 51 attributes from each of the 572 students and 64 attributes from each of the 390 teachers were obtained and anonymized to obtain the novel dataset “Covid-19 Go Away 2021” abbreviated as “C-19GA21”. C-19GA21 responses depict changes in emotional, behavioral, social, and cognitive aspects, attitudes towards Covid-19, and mental health measurements of its participants. The data collected includes the following: Email Address, informed consent, attention check question, basic Information like age, gender, nationality, state/ union territory, nature of institute, age group of participant, subjects taught/learnt. Information related to connectivity or access to Internet, availability of a device for online teaching/learning. Facilities provided by the institution such as E-books, ergonomic furniture, data packs for internet, software resources, hardware resources (laptop, tablet, webcam, etc), technological or IT support, training/ FDP/ workshops/ webinars, MOOCs, etc. Queries related to teaching-learning activities such as average number of hours spent on screen per day, platforms used, method of communication, average attendance in online classes, how these numbers compare to the attendance in the previous semester, reasons for increase/decrease in attendance, percentage of students actively participating in online classes, reasons why students do not participate actively, major obstacles encountered, pedagogy adopted, areas in which students/ teachers would require more assistance, attitude towards online/ open book assessments, etc. Another set of queries focused on emotional and behavioral aspects like - feeling at the end of an average day after classes are finished, social interaction, day-to-day routine, predominant emotional responses during the pandemic period, issues related to online classes causing distress. Participants’ views vis-a-vis the role of social media during the Pandemic, the extent of trust in content on social media groups, what in classroom teaching cannot be substituted by online teaching, how the pandemic has changed them as a person, ways the pandemic has changed their thinking process and in the end their message to the World after a year of Pandemic!
创建时间:
2024-01-23
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

LibriSpeech

LibriSpeech 是一个大约 1000 小时的 16kHz 英语朗读语音语料库,由 Vassil Panayotov 在 Daniel Povey 的协助下编写。数据来自 LibriVox 项目的已读有声读物,并经过仔细分割和对齐。

OpenDataLab 收录

CAP-DATA

CAP-DATA数据集由长安大学交通学院的研究团队创建,包含11,727个交通事故视频,总计超过2.19百万帧。该数据集不仅标注了事故发生的时间窗口,还提供了详细的文本描述,包括事故前的实际情况、事故类别、事故原因和预防建议。数据集的创建旨在通过结合视觉和文本信息,提高交通事故预测的准确性和解释性,从而支持更安全的驾驶决策系统。

arXiv 收录

AISHELL/AISHELL-1

Aishell是一个开源的中文普通话语音语料库,由北京壳壳科技有限公司发布。数据集包含了来自中国不同口音地区的400人的录音,录音在安静的室内环境中使用高保真麦克风进行,并下采样至16kHz。通过专业的语音标注和严格的质量检查,手动转录的准确率超过95%。该数据集免费供学术使用,旨在为语音识别领域的新研究人员提供适量的数据。

hugging_face 收录

China Air Quality Historical Data

该数据集包含了中国多个城市的空气质量历史数据,涵盖了PM2.5、PM10、SO2、NO2、CO、O3等污染物浓度以及空气质量指数(AQI)等信息。数据按小时记录,提供了详细的空气质量监测数据。

www.cnemc.cn 收录