five

PUMA Survey 5.3. Insights in societal changes in Austria

收藏
CESSDA2024-09-14 更新2024-08-10 收录
下载链接:
https://datacatalogue.cessda.eu/detail?lang=en&q=7a0e85154e2de3fef05c20babeee17c92ecdf88e07eaf6dff13ffc86beb30ad1
下载链接
链接失效反馈
资源简介:
Full edition for scientific use. PUMA Surveys consist of separate modules designed and prepared by different principle investigators. This PUMA Survey consists of two modules: MODULE 1 "Trick of the Traits. An experimental study on trait ownership and mediated leader effects", MODULE 2 "An Experimental Assessment of Approval and Evaluative Voting". Fieldwork was conducted by MARKETAGENT.<br><br/> MODULE 1: Trick of the Traits. An experimental study on trait ownership and mediated leader effects (Loes Aalerding, Sophie Lecheler) <br> This study tests, by means of a survey experiment, how leader perceptions are affected by media portrayals of party leaders in terms of their leadership traits, and to what extent partisan stereotypes and trait ownership moderates this relationship. Research has shown that citizens’ subjective party leader perceptions, especially in terms of leadership traits, affect voting behavior (e.g., Bittner, 2011; Aarts, Blais, & Schmitt, 2013). What remains a largely unresolved question, however, is which trait evaluations matter most. The main goal of this study is to test how media messages of party leaders in terms of their leadership traits affects voters’ perception of those party leaders and to what extent trait ownership moderates this relation. The contribution of the study is threefold. First, it takes into account that current political life is highly mediatized by focusing on mediated leader effects. Second, it strengthens the causal claim of (the conditionality) of leader effects by using an experimental research design as opposed to correlational data. Third, it is the first to test the theory of trait ownership in Austria and therefore (completely) outside the two-party context of the US. <br/><br>MODULE 2: An Experimental Assessment of Approval and Evaluative Voting (Philipp Harfst, Jean-Francois Laslier, Damien Bol) <br> In our PUMA module, we ran an online survey experiment in which we asked a representative sample of the Austrian population to cast a vote. We created a ballot to similar to the one of the 2017 election of the National Council. The respondents saw on their screen the main parties and the main candidates of these parties. Then, they had to indicate their preference for one of the parties and for 15 individual candidates within this party. The experimental treatment is the type of preference vote the respondents could cast to express their preference for individual candidates. A third of the respondents (randomly selected) could choose to approve each of the candidates or not [0,1]. This binary system is often called Approval Voting (AV). Another third of the respondents (randomly selected) could give 0, 1, or 2 points to each of the candidates. The last third of the respondents could give a positive, a negative, or no points to each of the candidates [-1,0,1]. These last two systems are two different versions to what is usually referred to as Evaluative Voting (EV). The goal of our research is to study the effect of the type of preference voting on voters’ decisions. The survey was fielded in June 2018 and targeted the population of eligible Austrian voters. The sample size is 700 respondents, and is representative of the Austrian population in terms of gender, age and education. The survey was conducted online, which is the best survey model for this type of study. Unlike telephone interviews, online surveys allow for a visualisation of the ballot, which helps improve the quality of responses. Also, this way of asking for respondents’ vote choice has already been successfully implemented in other contexts (Laslier et al. 2015). <br/>
提供机构:
The Austrian Social Science Data Archive
创建时间:
2019-04-12
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

LFW

人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download

AI_Studio 收录

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录

CCPD

CCPD是一个大型的、多样化的、经过仔细标注的中国城市车牌开源数据集。CCPD数据集主要分为CCPD2019数据集和CCPD2020(CCPD-Green)数据集。CCPD2019数据集车牌类型仅有普通车牌(蓝色车牌),CCPD2020数据集车牌类型仅有新能源车牌(绿色车牌)。在CCPD数据集中,每张图片仅包含一张车牌,车牌的车牌省份主要为皖。CCPD中的每幅图像都包含大量的标注信息,但是CCPD数据集没有专门的标注文件,每张图像的文件名就是该图像对应的数据标注。

github 收录

中国区域地面气象要素驱动数据集 v2.0(1951-2020)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 70 年(1951~2020 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 70 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。CMFD 2.0 的数据内容与此前宣传的 CMFD 1.7 基本一致,仅对 1983 年 7 月以后的向下短/长波辐射通量数据进行了更新,以修正其长期趋势存在的问题。2021 年至 2024 年的 CMFD 数据正在制作中,计划于 2025 年上半年发布,从而使 CMFD 2.0 延伸至 2024 年底。

国家青藏高原科学数据中心 收录

World Bank - World Governance Indicators

世界银行的世界治理指标(World Governance Indicators, WGI)数据集提供了全球各国在六个治理维度上的评估数据,包括言论和问责、政治稳定和无暴力、政府效率、监管质量、法治以及腐败控制。这些指标基于多个来源的数据,旨在帮助政策制定者和研究人员了解和改善治理质量。

databank.worldbank.org 收录