five

PUMA Survey 4.1. Insights in societal changes in Austria

收藏
CESSDA2024-09-14 更新2024-08-03 收录
下载链接:
https://datacatalogue.cessda.eu/detail?lang=en&q=e75b612961ac2700b6adc93897f9d50a9d28e76865e00ac8ce388819d802fd78
下载链接
链接失效反馈
资源简介:
Full edition for scientific use. PUMA Surveys consist of separate modules designed and prepared by different principle investigators. Fieldwork was conducted by Statistics Austria. This PUMA Survey consists of three modules: MODULE 1 "Family Background and the Intrahousehold Distribution of Resources - Explaining Gender Differences in Education", MODULE 2 "Voting Systems and Democratic Satisfaction - An Experimental Study", MODUL 3 "Skala zur Messung autoritärer Einstellungen in Österreich".<br><br /> MODULE 1: Family Background and the Intrahousehold Distribution of Resources: Explaining Gender Differences in Education (Alyssa Schneebaum, Doris Oberdabernig) <br> This research analyzes the role of family background in a person’s opportunities for later academic success. In particular, it studies the relationship between one’s own educational attainment and three other issues: the educational attainment of his or her parents; the academic environment at home while growing up; and the distribution of resources among siblings in a household. The first issue has been studied at great length in the international literature and is considered one of the critical components of “equality of opportunity.” If a descendant’s educational opportunities are very strongly determined by his or her parents’ academic achievements (or lack thereof), then a society is not providing equal opportunities. The second point -- the academic environment at home (typically proxied by data on the number of books at home while one was growing up) -- is certainly related to the first, but has never appeared in the literature for Austria. This research should fill that gap. The third point asks how a child’s chances of educational success are related to the presence of other children in the household while they were growing up (primarily their siblings). More specifically, which children are most likely to receive a family’s limited resources when there are multiple children in the household? How is a child’s gender and place in the birth order related to their level of educational attainment? This research thus addresses whether the chances for educational success are equally distributed among the children in a household. <br /><br>MODULE 2: Voting Systems and Democratic Satisfaction: An Experimental Study (Carolina Plescia, André Blais) <br> Voters’ satisfaction with democracy and electoral institutions represent core concepts that scholars have devoted much attention to (e.g., Lipset 1960; Powell 1982). In this regard, an extensive literature on ‘electoral engineering’ has developed with the fundamental aim to assess the link between electoral rules and several normatively important variables such as voters’ democratic satisfaction and their confidence in the electoral process (e.g., Anderson & Guillory 1997; Klingemann 1999; Powell 2000; Karp & Banducci 2008). While this literature provides important insights into the possible relationship between electoral rules and voters’ satisfaction, it has been unable thus far to demonstrate that a causal mechanism exists between electoral rules and voters’ perceptions. By relying on a survey experiment embedded within a national representative sample of the Austrian population, this module aims to disentangle the effect that input and output factors of electoral systems have on both voters’ diffuse satisfaction with democracy, and their specific satisfaction with the electoral process and perception of fairness of the electoral outcomes. In particular, we focus on two input factors, i.e., the supply of parties on the ballot paper and the type of vote choice voters are asked to make, and two output factors, i.e., the performance of the supported party and the translation of votes into seats. Given that electoral systems represent a crucial link in the chain connecting the preferences of citizens to election outcomes (Gallagher & Mitchell 2005) and given todays’ widespread discussions about electoral reforms in several countries like Canada and UK, it is important to know which factor of the electoral rules affects voters’ satisfaction. <br /><br>MODUL 3: Skala zur Messung autoritärer Einstellungen in Österreich (Wolfgang Aschauer) <br> Die gegenwärtigen Entwicklungen in vielen europäischen Gesellschaften deuten auf eine Renaissance autoritärer und antiegalitärer Einstellungen hin, wobei neben den zentralen Dimensionen der Autoritarismusforschung (Konventionalismus, autoritäre Unterordnung und autoritäre Aggression) auch die bereits in Vergessenheit geratenen zusätzlichen Dimensionen der Berkeley-Gruppe (z.B. Projektivität, Destruktivismus und Zynismus, Antiintrazeption etc.) Aufmerksamkeit erfahren sollten. In diesem Kurzbericht werden erste Ergebnisse einer neuen Autoritarismusskala präsentiert, die auf 27 Items beruht. Diese verdeutlicht eine modernisierte Fassung der ursprünglichen F-Skala, die aufgrund empirischer Defizite stets unter Kritik stand und deshalb sukzessive in Vergessenheit geraten bzw. durch neue verbesserte Skalen ersetzt worden ist. Empirisch zeigen erste Messungen der Skalenevaluation, dass auch in der vorliegenden Skala zahlreiche Adorno-Dimensionen nicht nachweisbar sind. Dennoch deuten explorative Faktorenanalysen und starke Korrelationen mit verwandten Konstrukten (z.B. politischer Zynismus, Anti-Egalitarismus und Fremdenfeindlichkeit) darauf hin, dass es in der aktuellen Zeitspanne eines gesellschaftlichen Umbruchs lohnenswert erscheint, erweiterte Autoritarismuskonzepte für die Forschung fruchtbar zu machen.
提供机构:
The Austrian Social Science Data Archive
作者:
PUMA (Plattform für Umfragen, Methoden und empirische Analysen)
开放时间:
2018-12-20
创建时间:
2018-12-20
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4120个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

MOOCs Dataset

该数据集包含了大规模开放在线课程(MOOCs)的相关数据,包括课程信息、用户行为、学习进度等。数据主要用于研究在线教育的行为模式和学习效果。

www.kaggle.com2024-10-25 收录

CAP-DATA

CAP-DATA数据集由长安大学交通学院的研究团队创建,包含11,727个交通事故视频,总计超过2.19百万帧。该数据集不仅标注了事故发生的时间窗口,还提供了详细的文本描述,包括事故前的实际情况、事故类别、事故原因和预防建议。数据集的创建旨在通过结合视觉和文本信息,提高交通事故预测的准确性和解释性,从而支持更安全的驾驶决策系统。

arXiv2024-06-21 收录

EV Charging Network Data

该数据集包含了电动汽车充电网络的相关信息,包括充电站的位置、充电桩的数量、充电速度、运营商信息等。数据集旨在帮助研究人员和开发者分析和优化电动汽车充电网络的布局和效率。

afdc.energy.gov2024-10-28 收录

LinkedIn Salary Insights Dataset

LinkedIn Salary Insights Dataset 提供了全球范围内的薪资数据,包括不同职位、行业、地理位置和经验水平的薪资信息。该数据集旨在帮助用户了解薪资趋势和市场行情,支持职业规划和薪资谈判。

www.linkedin.com2024-10-24 收录

Breast Ultrasound Images (BUSI)

小型(约500×500像素)超声图像,适用于良性和恶性病变的分类和分割任务。

github2024-12-13 收录