five

FineTuneBench|大型语言模型数据集|微调评估数据集

收藏
arXiv2024-11-11 更新2024-11-18 收录
大型语言模型
微调评估
下载链接:
https://github.com/kevinwu23/StanfordFineTuneBench
下载链接
链接失效反馈
资源简介:
FineTuneBench数据集由斯坦福大学创建,旨在评估商业化大型语言模型(LLMs)微调APIs在新知识注入和现有知识更新方面的效能。该数据集包含625个训练问题和1075个测试问题,覆盖新闻、虚构人物、医疗指南和代码更新四大领域。通过对比分析OpenAI和Google的五个前沿LLMs,包括GPT-4o和Gemini 1.5 Pro等,FineTuneBench揭示了微调服务在知识注入方面的显著不足。该数据集的创建过程基于最新新闻文章、虚构人物信息、医疗指南更新和代码框架变更,通过精心设计的问答对来测试模型的泛化能力。FineTuneBench的应用领域广泛,尤其适用于评估和改进LLMs在特定领域的知识更新和应用能力。
提供机构:
斯坦福大学
创建时间:
2024-11-11
AI搜集汇总
数据集介绍
main_image_url
构建方式
FineTuneBench数据集的构建基于对前沿大型语言模型(LLMs)在商业微调API下的知识注入能力的评估需求。该数据集包含四个领域的知识注入任务:最新新闻、虚构人物、医疗指南和代码更新。每个领域均包含训练问题和测试问题,旨在测试模型在摄取新信息和更新现有知识方面的有效性。数据集的生成过程包括从可靠来源收集最新信息,使用GPT-4o生成问题-答案对,并通过质量检查确保生成的内容符合标准。此外,数据集还包括对问题的重新表述和日期更改,以测试模型的泛化能力。
特点
FineTuneBench数据集的特点在于其多领域覆盖和严格的生成流程。数据集不仅涵盖了新闻、虚构人物、医疗和代码四个领域,还通过重新表述和日期更改等方式,增加了问题的复杂性和多样性,从而更全面地评估模型的知识注入能力。此外,数据集的生成过程严格遵循科学方法,确保每个问题和答案对的质量和可靠性。
使用方法
FineTuneBench数据集适用于评估和比较不同商业微调API在知识注入任务中的表现。用户可以通过该数据集对模型进行微调,并测试其在原始问题、重新表述问题和日期更改问题上的表现,以评估模型的记忆和泛化能力。数据集还提供了详细的训练和评估指南,帮助用户在不同领域和任务中进行系统的模型评估和优化。
背景与挑战
背景概述
随着大型语言模型(LLMs)在软件开发和医学等多样化领域的应用日益增多,确保这些模型包含最新和相关的知识变得至关重要。例如,软件开发者需要模型理解最新版本的代码,而医疗专业人员则需要可信赖的模型遵循当前的临床指南。此外,企业希望将这些模型适应内部使用,需要引入全新的知识,如员工信息或最新新闻。然而,目前大多数前沿模型是闭源的,用户无法直接应用模型微调技术。最近,一些公司通过商业API提供了对专有模型的监督微调,如OpenAI的微调UI和Google Vertex AI。这些服务为用户提供了一种适应闭源且计算成本高昂的前沿模型的途径。然而,这些微调服务是否能够实现知识注入,即学习新知识和更新知识的能力,尚不清楚。
当前挑战
FineTuneBench数据集旨在评估商业微调API在注入新知识和更新现有知识方面的有效性。主要挑战包括:1) 商业API提供的微调方法细节不明确,如Google Vertex AI允许用户指定‘适配器大小’,而OpenAI未提供任何细节;2) 缺乏统一的基准来评估这些方法并进行比较;3) 用户在超参数优化方面受到限制,默认值的建议可能不足以使模型适应新知识和更新知识。此外,模型在记忆原始问题后,在回答重新表述的问题或日期改变的问题时表现不佳,表明存在过度拟合问题。总体而言,当前商业微调服务在实现可靠知识注入方面存在显著不足。
常用场景
经典使用场景
FineTuneBench数据集的经典使用场景主要集中在评估商业微调API在向大型语言模型(LLMs)注入新知识和更新现有知识方面的有效性。通过分析包括GPT-4o和Gemini 1.5 Pro在内的五个前沿LLMs,该数据集在两个关键设置中测试了这些模型的能力:一是吸收新信息,如最近的新闻事件和新的人物简介;二是更新现有知识,如更新的医疗指南和代码框架。
解决学术问题
FineTuneBench数据集解决了当前学术界在理解商业微调API如何有效注入新知识和更新现有知识方面的关键问题。通过提供一个系统化的评估框架和数据集,该研究揭示了现有模型在通过微调学习新信息方面的显著不足,平均泛化准确率仅为37%。在更新现有知识方面,如整合医疗指南更新,商业微调API的能力更为有限,平均泛化准确率仅为19%。这些发现强调了当前商业微调服务在实现可靠知识注入方面的主要缺陷。
衍生相关工作
FineTuneBench数据集的引入激发了一系列相关研究工作,特别是在知识注入和模型微调领域。例如,一些研究探索了通过多适配器模型将知识注入BERT的方法,以及比较了继续预训练与检索增强生成(RAG)在模型如Llama-2-7B和Mistral-7B中的有效性。此外,Chen等人的研究探讨了在浅层选择性微调Llama-2-7B以实现知识注入。这些工作都是在FineTuneBench数据集的基础上进行的,进一步推动了LLMs在知识注入和更新方面的研究。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

giovannidemuri__sharegpt-ex50000-seed5_llama8b-er-v573-seed2-hx_256_ngt0.7_tp0.9

该数据集包含了用户与助手之间的对话,其中包含两个字段:用户发言和助手回应,均为字符串类型。训练集大小为38646852字节,共有44096条对话记录。

huggingface 收录

MeSH

MeSH(医学主题词表)是一个用于索引和检索生物医学文献的标准化词汇表。它包含了大量的医学术语和概念,用于描述医学文献中的主题和内容。MeSH数据集包括主题词、副主题词、树状结构、历史记录等信息,广泛应用于医学文献的分类和检索。

www.nlm.nih.gov 收录

MedTrinity-25M

MedTrinity-25M是由华中科技大学、加州大学圣克鲁兹分校、哈佛大学和斯坦福大学联合创建的一个大规模多模态医学数据集,包含超过2500万张图像,涉及10种模态和65种疾病。数据集通过自动化的数据构建流程生成,不依赖于配对的文本描述,而是通过专家模型和知识库增强的多模态大型语言模型生成多粒度视觉和文本注释。数据集的创建过程包括从90多个在线资源收集数据,应用专家模型识别感兴趣区域(ROIs),并构建知识库以生成详细的文本描述。MedTrinity-25M旨在支持广泛的医学多模态任务,如图像标注和报告生成,以及视觉中心的任务如分类和分割,推动医学领域基础模型的发展。

arXiv 收录

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

UCF-Crime

UCF-犯罪数据集是128小时视频的新型大规模第一个数据集。它包含1900年长而未修剪的真实世界监控视频,其中包含13个现实异常,包括虐待,逮捕,纵火,殴打,道路交通事故,入室盗窃,爆炸,战斗,抢劫,射击,偷窃,入店行窃和故意破坏。之所以选择这些异常,是因为它们对公共安全有重大影响。这个数据集可以用于两个任务。首先,考虑一组中的所有异常和另一组中的所有正常活动的一般异常检测。第二,用于识别13个异常活动中的每一个。

OpenDataLab 收录