five

Speech-Forensics|语音分析数据集|语音取证数据集

收藏
arXiv2024-12-16 更新2024-12-14 收录
语音分析
语音取证
下载链接:
https://github.com/ring-zl/Speech-Forensics
下载链接
链接失效反馈
资源简介:
Speech-Forensics数据集由西安交通大学创建,旨在提供一个全面的合成语音分析数据集,涵盖真实语音、合成语音和部分伪造语音样本。数据集包含4323条记录,通过NER和反义词替换策略生成,确保语义一致性。数据集支持多维度的语音分析任务,包括真实性检测、伪造区域定位和合成算法识别,旨在解决语音伪造检测和身份冒充等问题。
提供机构:
西安交通大学
创建时间:
2024-12-12
AI搜集汇总
数据集介绍
main_image_url
构建方式
Speech-Forensics数据集的构建过程严格遵循了多步骤的数据处理流程,以确保生成的语音样本在语义上保持一致性和真实性。首先,从LJ Speech数据集中选择合适的音频内容,并通过命名实体识别(NER)算法对文本进行编辑,替换其中的实体以增加多样性。接着,使用反义词替换策略对形容词进行修改,以模拟实际语音伪造中的多样化场景。随后,通过先进的文本到语音(TTS)和语音转换(VC)算法生成合成音频,并使用Montreal Forced Aligner工具进行音频与文本的对齐,确保合成片段能够无缝融入原始音频。最终,数据集包含了多种合成算法生成的多段伪造语音,并详细记录了每个伪造片段的算法信息,为后续的语音分析提供了丰富的数据支持。
特点
Speech-Forensics数据集的显著特点在于其全面性和多样性。该数据集不仅包含了真实的语音样本,还涵盖了多种合成算法生成的伪造语音,支持从语音真实性检测到伪造片段定位以及合成算法识别的多维度分析。此外,数据集中的每个样本都包含了多个伪造片段,且每个片段都标注了具体的合成算法,使得研究者能够进行更为细致的分析。数据集的构建方式确保了伪造语音在语义上的连贯性,使其更贴近实际应用场景,从而为语音伪造检测和分析提供了强有力的支持。
使用方法
Speech-Forensics数据集可广泛应用于语音伪造检测、伪造片段定位以及合成算法识别等多个任务。研究者可以利用该数据集训练模型,以实现对语音真实性的自动检测,同时定位伪造片段并识别其使用的合成算法。数据集提供了详细的标注信息,包括每个伪造片段的时间戳和对应的合成算法,使得模型能够在无需复杂后处理的情况下,直接输出伪造片段的位置和算法类型。此外,数据集的多维度特性使其适用于多种语音分析任务,为研究者提供了丰富的实验数据,有助于推动语音伪造检测技术的发展。
背景与挑战
背景概述
随着深度伪造技术的快速发展,语音伪造的检测变得愈发重要,尤其是在防范虚假信息和身份冒充方面。尽管已有多个合成语音分析数据集,但它们往往局限于特定领域,难以满足全面研究的需求。为此,西安交通大学的研究团队于2024年提出了Speech-Forensics数据集,旨在通过涵盖真实的、合成的以及部分伪造的语音样本,支持多维度的语音分析。该数据集不仅记录了伪造算法,还通过多区域伪造的方式,增强了数据集的复杂性和实用性,为语音伪造检测、区域定位和算法识别提供了全面的基准。
当前挑战
Speech-Forensics数据集的构建面临多重挑战。首先,如何在保持语音语义连贯性的同时,生成多样化的伪造样本是一个技术难题。其次,现有的数据集大多侧重于单一的伪造检测任务,而Speech-Forensics需要同时支持伪造检测、区域定位和算法识别,这对模型的复杂性和精度提出了更高的要求。此外,数据集的多样性和规模也限制了其在实际应用中的广泛适用性,尤其是在面对未知伪造算法时,模型的泛化能力仍需进一步提升。
常用场景
经典使用场景
Speech-Forensics数据集的经典使用场景主要集中在合成语音的全面分析上。该数据集包含了多种类型的合成语音样本,包括完全合成、部分合成以及多种合成算法生成的语音片段。研究人员可以利用该数据集进行合成语音的真实性检测、伪造片段的定位以及合成算法的识别。通过这些任务,研究人员能够开发出更为精确和全面的语音伪造检测模型,以应对日益复杂的语音伪造技术。
解决学术问题
Speech-Forensics数据集解决了合成语音分析领域中的多个关键学术问题。首先,它填补了现有数据集在多区域伪造和多算法识别方面的不足,使得研究人员能够进行更为细致的语音伪造分析。其次,该数据集支持对合成语音的全面分析,包括真实性检测、伪造片段定位和算法识别,从而推动了语音伪造检测技术的发展。此外,通过提供详细的伪造算法标签,该数据集为研究者提供了深入理解合成语音生成过程的机会,进一步提升了语音伪造检测的准确性和鲁棒性。
衍生相关工作
Speech-Forensics数据集的发布催生了一系列相关研究工作。首先,基于该数据集,研究人员开发了多种语音伪造检测模型,如TEST网络,该模型能够同时进行真实性检测、伪造片段定位和算法识别。其次,该数据集促进了多任务学习在语音伪造检测中的应用,推动了合成语音分析技术的进步。此外,Speech-Forensics数据集还为语音伪造检测领域的基准测试提供了新的标准,促进了该领域的技术交流和合作。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

PCLT20K

PCLT20K数据集是由湖南大学等机构创建的一个大规模PET-CT肺癌肿瘤分割数据集,包含来自605名患者的21,930对PET-CT图像,所有图像都带有高质量的像素级肿瘤区域标注。该数据集旨在促进医学图像分割研究,特别是在PET-CT图像中肺癌肿瘤的分割任务。

arXiv 收录

OpenSonarDatasets

OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。

github 收录

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github 收录

中国行政区划数据

本项目为中国行政区划数据,包括省级、地级、县级、乡级和村级五级行政区划数据。数据来源于国家统计局,存储格式为sqlite3 db文件,支持直接使用数据库连接工具打开。

github 收录