five

BPI Challenge 2019|供应链管理数据集|合规性分析数据集

收藏
DataCite Commons2025-04-01 更新2024-08-31 收录
供应链管理
合规性分析
下载链接:
https://data.4tu.nl/articles/_/12715853/1
下载链接
链接失效反馈
资源简介:
This data originated from a large multinational company operating from The Netherlands in the area of coatings and paints and we ask participants to investigate the purchase order handling process for some of its 60 subsidiaries. In particular, the process owner has compliance questions. In the data, each purchase order (or purchase document) contains one or more line items. For each line item, there are roughly four types of flows in the data: (1) 3-way matching, invoice after goods receipt: For these items, the value of the goods receipt message should be matched against the value of an invoice receipt message and the value put during creation of the item (indicated by both the GR-based flag and the Goods Receipt flags set to true). (2) 3-way matching, invoice before goods receipt: Purchase Items that do require a goods receipt message, while they do not require GR-based invoicing (indicated by the GR-based IV flag set to false and the Goods Receipt flags set to true). For such purchase items, invoices can be entered before the goods are receipt, but they are blocked until goods are received. This unblocking can be done by a user, or by a batch process at regular intervals. Invoices should only be cleared if goods are received and the value matches with the invoice and the value at creation of the item. (3) 2-way matching (no goods receipt needed): For these items, the value of the invoice should match the value at creation (in full or partially until PO value is consumed), but there is no separate goods receipt message required (indicated by both the GR-based flag and the Goods Receipt flags set to false). (4)Consignment: For these items, there are no invoices on PO level as this is handled fully in a separate process. Here we see GR indicator is set to true but the GR IV flag is set to false and also we know by item type (consignment) that we do not expect an invoice against this item. Unfortunately, the complexity of the data goes further than just this division in four categories. For each purchase item, there can be many goods receipt messages and corresponding invoices which are subsequently paid. Consider for example the process of paying rent. There is a Purchase Document with one item for paying rent, but a total of 12 goods receipt messages with (cleared) invoices with a value equal to 1/12 of the total amount. For logistical services, there may even be hundreds of goods receipt messages for one line item. Overall, for each line item, the amounts of the line item, the goods receipt messages (if applicable) and the invoices have to match for the process to be compliant. Of course, the log is anonymized, but some semantics are left in the data, for example: The resources are split between batch users and normal users indicated by their name. The batch users are automated processes executed by different systems. The normal users refer to human actors in the process. The monetary values of each event are anonymized from the original data using a linear translation respecting 0, i.e. addition of multiple invoices for a single item should still lead to the original item worth (although there may be small rounding errors for numerical reasons). Company, vendor, system and document names and IDs are anonymized in a consistent way throughout the log. The company has the key, so any result can be translated by them to business insights about real customers and real purchase documents. The event log is fully IEEE-XES compliant and is structured as follows. The case ID is a combination of the purchase document and the purchase item. There is a total of 76,349 purchase documents containing in total 251,734 items, i.e. there are 251,734 cases. In these cases, there are 1,595,923 events relating to 42 activities performed by 627 users (607 human users and 20 batch users). Sometimes the user field is empty, or NONE, which indicates no user was recorded in the source system. For each purchase item (or case) the following attributes are recorded: concept:name: A combination of the purchase document id and the item id, Purchasing Document: The purchasing document ID, Item: The item ID, Item Type: The type of the item, GR-Based Inv. Verif.: Flag indicating if GR-based invoicing is required (see above), Goods Receipt: Flag indicating if 3-way matching is required (see above), Source: The source system of this item, Doc. Category name: The name of the category of the purchasing document, Company: The subsidiary of the company from where the purchase originated, Spend classification text: A text explaining the class of purchase item, Spend area text: A text explaining the area for the purchase item, Sub spend area text: Another text explaining the area for the purchase item, Vendor: The vendor to which the purchase document was sent, Name: The name of the vendor, Document Type: The document type, Item Category: The category as explained above (3-way with GR-based invoicing, 3-way without, 2-way, consignment).
提供机构:
4TU.Centre for Research Data
创建时间:
2019-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录

FAOSTAT Agricultural Data

FAOSTAT Agricultural Data 是由联合国粮食及农业组织(FAO)提供的全球农业数据集。该数据集涵盖了农业生产、贸易、价格、土地利用、水资源、气候变化、人口统计等多个方面的详细信息。数据包括了全球各个国家和地区的农业统计数据,旨在为政策制定者、研究人员和公众提供全面的农业信息。

www.fao.org 收录

IXI Dataset

IXI数据集包含近600张来自正常健康受试者的MRI图像,包括T1、T2、PD加权图像、MRA图像和扩散加权图像。数据集在Hammersmith医院、Guy’s医院和Institute of Psychiatry使用不同系统进行扫描。

github 收录

长江干流实时水位观测数据集(2024年)

该数据集为长江干流主要水文站实时水位观测数据集,包含了汉口、户口、九江、宜昌等16个水文站点的逐小时或逐日水位观测数据。 该数据集包含3个excel表格文件,长江干流站点.xls,逐日水位.xlsx,逐小时水位.xlsx。

国家地球系统科学数据中心 收录