five

OSPTrack|开源软件供应链安全数据集|恶意软件检测数据集

收藏
arXiv2024-11-22 更新2024-11-26 收录
开源软件供应链安全
恶意软件检测
下载链接:
https://github.com/ossf/package-analysis
下载链接
链接失效反馈
资源简介:
OSPTrack是由格拉斯哥大学创建的一个标签化数据集,专注于模拟开源软件包的执行过程。该数据集涵盖了多个生态系统,包括npm、pypi、crates.io、nuget和packagist,共包含9,461个软件包报告,其中1,962个为恶意软件包。数据集通过在隔离环境中捕获软件包和库执行期间生成的特征,如文件、套接字、命令和DNS记录,来帮助识别恶意指示器。数据集的创建过程包括多进程分析、报告解析和特征提取,旨在解决开源软件供应链安全中的漏洞检测问题,特别是在源代码访问受限的情况下。
提供机构:
格拉斯哥大学
创建时间:
2024-11-22
AI搜集汇总
数据集介绍
main_image_url
构建方式
OSPTrack数据集的构建基于对开源软件包在模拟环境中的执行过程进行详细监控。研究团队利用package-analysis工具,在隔离的沙箱环境中模拟了多个生态系统(如npm、pypi、crates.io、nuget和packagist)中的软件包执行。通过这种方式,数据集捕获了软件包在运行时的静态和动态特征,包括文件操作、套接字连接、命令执行和DNS记录等。此外,数据集还整合了来自BigQuery的公开数据,以确保样本的多样性和覆盖面。最终,通过解析生成的报告并提取特征,构建了一个包含9,461个软件包报告的全面数据集,其中1,962个为恶意软件包。
特点
OSPTrack数据集的一个显著特点是其丰富的特征集和详细的标签信息。数据集不仅包含了静态代码分析中常见的特征,还引入了运行时动态特征,如网络交互和系统调用,这使得检测方法更加全面和精确。此外,数据集的标签不仅区分了恶意和良性软件包,还进一步细分为多种攻击类型,如数据泄露、恶意命令执行等,提供了更为细致的分析基础。这种多维度的特征和详细的标签使得OSPTrack成为研究开源软件供应链安全的重要资源。
使用方法
OSPTrack数据集适用于多种研究场景,特别是在开源软件供应链安全领域。研究者可以利用该数据集训练机器学习模型,以区分良性与恶意软件包,并识别运行时中的潜在漏洞。数据集的详细标签和多维度特征支持监督学习和无监督学习方法,有助于开发高效的检测算法。此外,数据集的多样性使得研究者能够进行跨生态系统的比较分析,进一步理解不同环境中恶意软件包的行为模式。通过这些分析,研究者可以提出更有效的防御策略,提升开源软件供应链的整体安全性。
背景与挑战
背景概述
OSPTrack数据集由格拉斯哥大学的Zhuoran Tan、Christos Anagnostopoulos和Jeremy Singer等人创建,旨在解决开源软件(OSS)供应链安全中的运行时特征缺失问题。该数据集于2024年发布,涵盖了多个生态系统,包括npm、pypi、crates.io、nuget和packagist,捕捉了软件包和库在隔离环境中的执行特征。OSPTrack数据集包含9,461个包报告,其中1,962个为恶意包,具有静态和动态特征,如文件、套接字、命令和DNS记录。该数据集通过详细的子标签标注攻击类型,有助于在源代码访问受限时识别恶意指示器,并支持运行时的有效检测方法。
当前挑战
OSPTrack数据集面临的挑战主要包括:1) 解决领域问题中的挑战,如在复杂系统中嵌入的OSS的运行时特征捕捉;2) 构建过程中遇到的挑战,如模拟执行中某些包因依赖缺失而无法分析,以及某些包导致模拟过程卡顿,影响后续包的分析。此外,由于源代码不可用,模拟场景无法完全捕捉注入过程,且部分恶意包因超时设置而被排除在数据集之外。未来计划通过定期更新数据集,以包含更多样化和广泛的恶意报告。
常用场景
经典使用场景
OSPTrack数据集的经典使用场景主要集中在开源软件供应链安全领域,特别是在检测恶意软件包的运行时行为。通过模拟多个生态系统中的软件包执行,该数据集捕捉了静态和动态特征,如文件操作、网络套接字、命令执行和DNS记录。这些特征的详细标注使得研究人员能够开发和验证基于机器学习的恶意软件检测模型,尤其是在源代码访问受限的情况下。
实际应用
在实际应用中,OSPTrack数据集可用于开发和部署实时恶意软件检测系统,特别是在开源软件供应链管理中。例如,企业可以使用该数据集训练的模型来监控和分析其软件包的运行时行为,及时发现并阻止潜在的恶意活动。此外,该数据集还可用于教育和培训,帮助安全专业人员更好地理解和应对复杂的供应链攻击。
衍生相关工作
OSPTrack数据集的发布激发了一系列相关研究工作,特别是在开源软件供应链安全领域。例如,一些研究者利用该数据集开发了新的机器学习模型,以提高恶意软件检测的准确性和效率。此外,还有研究探讨了如何利用OSPTrack数据集进行跨生态系统的恶意软件行为比较分析,以及如何构建基于图的表示学习模型来更好地捕捉和理解复杂的攻击模式。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国1km分辨率逐月平均气温数据集(1901-2024)

该数据为中国逐月平均温度数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。数据单位为0.1 ℃。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

全国 1∶200 000 数字地质图(公开版)空间数据库

As the only one of its kind, China National Digital Geological Map (Public Version at 1∶200 000 scale) Spatial Database (CNDGM-PVSD) is based on China' s former nationwide measured results of regional geological survey at 1∶200 000 scale, and is also one of the nationwide basic geosciences spatial databases jointly accomplished by multiple organizations of China. Spatially, it embraces 1 163 geological map-sheets (at scale 1: 200 000) in both formats of MapGIS and ArcGIS, covering 72% of China's whole territory with a total data volume of 90 GB. Its main sources is from 1∶200 000 regional geological survey reports, geological maps, and mineral resources maps with an original time span from mid-1950s to early 1990s. Approved by the State's related agencies, it meets all the related technical qualification requirements and standards issued by China Geological Survey in data integrity, logic consistency, location acc racy, attribution fineness, and collation precision, and is hence of excellent and reliable quality. The CNDGM-PVSD is an important component of China' s national spatial database categories, serving as a spatial digital platform for the information construction of the State's national economy, and providing informationbackbones to the national and provincial economic planning, geohazard monitoring, geological survey, mineral resources exploration as well as macro decision-making.

DataCite Commons 收录

中国地质调查局: 全国1∶200 000区域水文地质图空间数据库

全国1∶200 000区域水文地质图空间数据库以建国后在全国范围内(本次未在香港特别行政区、澳门特别行政区和台湾省开展工作) 30个省开展的1∶200 000区域水文地质普查工作所取得的区域水文地质普查报告、综合水文地质图等地质资料为数据源,在制定的“1∶200 000区域水文地质图空间数据库图层及属性文件格式标准”的基础上,建成了一个全国性的、大型的区域水文地质学空间数据库。该数据库总共采集、处理了全国范围内1∶200 000图幅的<number>1 017</number>幅全要素综合水文地质图信息,全部数据量约50 GB。数据库涵盖了以1∶200 000国际标准图幅为管理单位的水文地质要素空间数据图层,内容包括:地理要素(交通层、水系层、行政区划层等),基础地质要素(地层分区层、断裂构造层),水文地质要素(地下水类型层、地下水富水性层、地下水迳流模数层,地下水水质层、水文地质特征层、地下水利用规划层),专题要素(综合水文地质柱状图,水文地质剖面图) 四大类近30个要素图层。空间数据库主要采用MapGIS地理信息系统格式存储,形成了目前国内覆盖范围最广、包含信息最完整的区域水文地质图空间数据库成果,是地质领域全国性最重要的基础信息资源之一。

DataCite Commons 收录

YOLO Drone Detection Dataset

为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。

github 收录

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录