imagenet-1k-256x256|图像分类数据集|大规模数据集数据集
收藏huggingface2024-09-15 更新2024-12-12 收录
下载链接:
https://huggingface.co/datasets/benjamin-paine/imagenet-1k-256x256
下载链接
链接失效反馈资源简介:
ImageNet是一个大规模的图像分类数据集,包含了超过1000个类别的图像数据。每个图像都有一个对应的标签,标签是图像中物体的类别。数据集的语言为英语,许可证为'other',并且是单语种的。数据集的大小在1M到10M之间,源数据为原始数据。任务类别为图像分类,具体任务为多类图像分类。
开放时间:
2024-09-13
创建时间:
2024-09-13
原始信息汇总
ImageNet-1k-256x256 数据集概述
基本信息
- 数据集名称: ImageNet-1k-256x256
- 数据集别名: ImageNet
- 数据集ID: imagenet-1k-1
- 数据集标签: imagenet, imagenet-1k, ilsvrc-2012
数据集描述
- 任务类别: 图像分类
- 任务ID: 多类图像分类
- 语言: 英语
- 多语言性: 单语种
- 数据集大小: 1M < n < 10M
- 数据来源: 原始数据
- 注释创建者: 众包
- 语言创建者: 众包
- 许可证: 其他(imagenet-agreement)
数据集特征
- 图像: 包含256x256分辨率的图像
- 标签: 包含1000个类别的标签,每个类别对应一个具体的物体或动物名称
标签列表(部分)
- 0: tench, Tinca tinca
- 1: goldfish, Carassius auratus
- 2: great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias
- 3: tiger shark, Galeocerdo cuvieri
- 4: hammerhead, hammerhead shark
- 5: electric ray, crampfish, numbfish, torpedo
- 6: stingray
- 7: cock
- 8: hen
- 9: ostrich, Struthio camelus
- 10: brambling, Fringilla montifringilla
- 11: goldfinch, Carduelis carduelis
- 12: house finch, linnet, Carpodacus mexicanus
- 13: junco, snowbird
- 14: indigo bunting, indigo finch, indigo bird, Passerina cyanea
- 15: robin, American robin, Turdus migratorius
- 16: bulbul
- 17: jay
- 18: magpie
- 19: chickadee
- 20: water ouzel, dipper
- 21: kite
- 22: bald eagle, American eagle, Haliaeetus leucocephalus
- 23: vulture
- 24: great grey owl, great gray owl, Strix nebulosa
- 25: European fire salamander, Salamandra salamandra
- 26: common newt, Triturus vulgaris
- 27: eft
- 28: spotted salamander, Ambystoma maculatum
- 29: axolotl, mud puppy, Ambystoma mexicanum
- 30: bullfrog, Rana catesbeiana
- 31: tree frog, tree-frog
- 32: tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui
- 33: loggerhead, loggerhead turtle, Caretta caretta
- 34: leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea
- 35: mud turtle
- 36: terrapin
- 37: box turtle, box tortoise
- 38: banded gecko
- 39: common iguana, iguana, Iguana iguana
- 40: American chameleon, anole, Anolis carolinensis
- 41: whiptail, whiptail lizard
- 42: agama
- 43: frilled lizard, Chlamydosaurus kingi
- 44: alligator lizard
- 45: Gila monster, Heloderma suspectum
- 46: green lizard, Lacerta viridis
- 47: African chameleon, Chamaeleo chamaeleon
- 48: Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis
- 49: African crocodile, Nile crocodile, Crocodylus niloticus
- 50: American alligator, Alligator mississipiensis
- 51: triceratops
- 52: thunder snake, worm snake, Carphophis amoenus
- 53: ringneck snake, ring-necked snake, ring snake
- 54: hognose snake, puff adder, sand viper
- 55: green snake, grass snake
- 56: king snake, kingsnake
- 57: garter snake, grass snake
- 58: water snake
- 59: vine snake
- 60: night snake, Hypsiglena torquata
- 61: boa constrictor, Constrictor constrictor
- 62: rock python, rock snake, Python sebae
- 63: Indian cobra, Naja naja
- 64: green mamba
- 65: sea snake
- 66: horned viper, cerastes, sand viper, horned asp, Cerastes cornutus
- 67: diamondback, diamondback rattlesnake, Crotalus adamanteus
- 68: sidewinder, horned rattlesnake, Crotalus cerastes
- 69: trilobite
- 70: harvestman, daddy longlegs, Phalangium opilio
- 71: scorpion
- 72: black and gold garden spider, Argiope aurantia
- 73: barn spider, Araneus cavaticus
- 74: garden spider, Aranea diademata
- 75: black widow, Latrodectus mactans
- 76: tarantula
- 77: wolf spider, hunting spider
- 78: tick
- 79: centipede
- 80: black grouse
- 81: ptarmigan
- 82: ruffed grouse, partridge, Bonasa umbellus
- 83: prairie chicken, prairie grouse, prairie fowl
- 84: peacock
- 85: quail
- 86: partridge
- 87: African grey, African gray, Psittacus erithacus
- 88: macaw
- 89: sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita
- 90: lorikeet
- 91: coucal
- 92: bee eater
- 93: hornbill
- 94: hummingbird
- 95: jacamar
- 96: toucan
- 97: drake
- 98: red-breasted merganser, Mergus serrator
- 99: goose
- 100: black swan, Cygnus atratus
- 101: tusker
- 102: echidna, spiny anteater, anteater
- 103: platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus
- 104: wallaby, brush kangaroo
- 105: koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus
- 106: wombat
- 107: jellyfish
- 108: sea anemone, anemone
- 109: brain coral
- 110: flatworm, platyhelminth
- 111: nematode, nematode worm, roundworm
- 112: conch
- 113: snail
- 114: slug
- 115: sea slug, nudibranch
- 116: chiton, coat-of-mail shell, sea cradle, polyplacophore
- 117: chambered nautilus, pearly nautilus, nautilus
- 118: Dungeness crab, Cancer magister
- 119: rock crab, Cancer irroratus
- 120: fiddler crab
- 121: king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica
- 122: American lobster, Northern lobster, Maine lobster, Homarus americanus
- 123: spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish
- 124: crayfish, crawfish, crawdad, crawdaddy
- 125: hermit crab
- 126: isopod
- 127: white stork, Ciconia ciconia
- 128: black stork, Ciconia nigra
- 129: spoonbill
- 130: flamingo
- 131: little blue heron, Egretta caerulea
- 132: American egret, great white heron, Egretta albus
- 133: bittern
- 134: crane
- 135: limpkin, Aramus pictus
- 136: European gallinule, Porphyrio porphyrio
- 137: American coot, marsh hen, mud hen, water hen, Fulica americana
- 138: bustard
- 139: ruddy turnstone, Arenaria interpres
- 140: red-backed sandpiper, dunlin, Erolia alpina
- 141: redshank, Tringa totanus
- 142: dowitcher
- 143: oystercatcher, oyster catcher
- 144: pelican
- 145: king penguin, Aptenodytes patagonica
- 146: albatross, mollymawk
- 147: grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus
- 148: killer whale, killer, orca, grampus, sea wolf, Orcinus orca
- 149: dugong, Dugong dugon
- 150: sea lion
- 151: Chihuahua
- 152: Japanese spaniel
- 153: Maltese dog, Maltese terrier, Maltese
- 154: Pekinese, Pekingese, Peke
- 155: Shih-Tzu
- 156: Blenheim spaniel
- 157: papillon
- 158: toy terrier
- 159: Rhodesian ridgeback
- 160: Afghan hound, Afghan
- 161: basset, basset hound
- 162: beagle
- 163: bloodhound, sleuthhound
- 164: bluetick
- 165: black-and-tan coonhound
- 166: Walker hound, Walker foxhound
- 167: English foxhound
- 168: redbone
- 169: borzoi, Russian wolfhound
- 170: Irish wolfhound
- 171: Italian greyhound
- 172: whippet
- 173: Ibizan hound, Ibizan Podenco
- 174: Norwegian elkhound, elkhound
- 175: otterhound, otter hound
- 176: Saluki, gazelle hound
- 177: Scottish deerhound, deerhound
- 178: Weimaraner
- 179: Staffordshire bullterrier, Staffordshire bull terrier
- 180: American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier
- 181: Bedlington terrier
- 182: Border terrier
- 183: Kerry blue terrier
- 184: Irish terrier
- 185: Norfolk terrier
- 186: Norwich terrier
- 187: Yorkshire terrier
- 188: wire-haired fox terrier
- 189: Lakeland terrier
- 190: Sealyham terrier, Sealyham
- 191: Airedale, Airedale terrier
- 192: cairn, cairn terrier
- 193: Australian terrier
- 194: Dandie Dinmont, Dandie Dinmont terrier
- 195: Boston bull, Boston terrier
- 196: miniature schnauzer
- 197: giant schnauzer
- 198: standard schnauzer
- 199: Scotch terrier, Scottish terrier, Scottie
- 200: Tibetan terrier, chrysanthemum dog
- 201: silky terrier, Sydney silky
- 202: soft-coated wheaten terrier
- 203: West Highland white terrier
- 204: Lhasa, Lhasa apso
- 205: flat-coated retriever
- 206: curly-coated retriever
- 207: golden retriever
- 208: Labrador retriever
- 209: Chesapeake Bay retriever
- 210: German short-haired pointer
- 211: vizsla, Hungarian pointer
- 212: English setter
- 213: Irish setter, red setter
- 214: Gordon setter
- 215: Brittany spaniel
- 216: clumber, clumber spaniel
- 217: English springer, English springer spaniel
- 218: Welsh springer spaniel
- 219: cocker spaniel, English cocker spaniel, cocker
- 220: Sussex spaniel
- 221: Irish water spaniel
- 222: kuvasz
- 223: schipperke
- 224: groenendael
- 225: malinois
- 226: briard
- 227: kelpie
- 228: komondor
- 229: Old English sheepdog, bobtail
- 230: Shetland sheepdog, Shetland sheep dog, Shetland
- 231: collie
- 232: Border collie
- 233: Bouvier des Flandres, Bouviers des Flandres
- 234: Rottweiler
- 235: German shepherd, German shepherd dog, German police dog, alsatian
- 236: Doberman, Doberman pinscher
- 237: miniature pinscher
- 238: Greater Swiss Mountain dog
- 239: Bernese mountain dog
- 240: Appenzeller
- 241: EntleBucher
- 242: boxer
- 243: bull mastiff
- 244: Tibetan mastiff
- 245: French bulldog
- 246: Great Dane
- 247: Saint Bernard, St Bernard
- 248: Eskimo dog, husky
- 249: malamute, malemute, Alaskan malamute
- 250: Siberian husky
- 251: dalmatian, coach dog, carriage dog
- 252: affenpinscher, monkey pinscher, monkey dog
- 253: basenji
- 254: pug, pug-dog
- 255: Leonberg
- 256: Newfoundland, Newfoundland dog
- 257: Great Pyrenees
- 258: Samoyed, Samoyede
- 259: Pomeranian
- 260: chow, chow chow
- 261: keeshond
- 262: Brabancon griffon
- 263: Pembroke, Pembroke Welsh corgi
- 264: Cardigan, Cardigan Welsh corgi
- 265: toy poodle
- 266: miniature poodle
- 267: standard poodle
- 268: Mexican hairless
- 269: timber wolf, grey wolf, gray wolf, Canis lupus
- 270: white wolf, Arctic wolf, Canis lupus tundrarum
- 271: red wolf, maned wolf, Canis rufus, Canis niger
- 272: coyote, prairie wolf, brush wolf, Canis latrans
- 273: dingo, warrigal, warragal, Canis dingo
- 274: dhole, Cuon alpinus
- 275: African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus
- 276: hyena, hyaena
- 277: red fox, Vulpes vulpes
- 278: kit fox, Vulpes macrotis
- 279: Arctic fox, white fox, Alopex lagopus
- 280: grey fox, gray fox, U
AI搜集汇总
数据集介绍

构建方式
ImageNet-1k-256x256数据集是通过众包方式构建的,涵盖了1000个类别的高分辨率图像。该数据集的构建依赖于大规模的标注工作,每个图像都与特定的类别标签相关联,确保了数据集的多样性和广泛性。通过这种方式,ImageNet-1k-256x256为图像分类任务提供了丰富的训练和测试资源。
特点
ImageNet-1k-256x256数据集的主要特点在于其庞大的规模和多样性。该数据集包含超过100万张图像,涵盖了从自然界到人工制品的广泛类别,适合用于多类图像分类任务。此外,图像的分辨率统一为256x256像素,确保了数据处理的一致性,便于模型训练和评估。
使用方法
ImageNet-1k-256x256数据集主要用于图像分类任务,研究人员可以通过加载该数据集进行模型训练和验证。使用时,用户需遵守ImageNet的访问条款,确保数据仅用于非商业研究和教育目的。数据集的图像和标签可以直接用于深度学习模型的输入,支持多种图像处理和分类算法的研究与开发。
背景与挑战
背景概述
ImageNet-1k-256x256数据集是计算机视觉领域中具有里程碑意义的数据集之一,由普林斯顿大学和斯坦福大学的研究人员主导开发,最早于2012年作为ImageNet大规模视觉识别挑战赛(ILSVRC)的一部分发布。该数据集包含了超过100万张标注图像,涵盖1000个类别,主要用于多类别图像分类任务。ImageNet-1k的推出极大地推动了深度学习在图像识别领域的应用,尤其是卷积神经网络(CNN)的发展,成为许多现代计算机视觉模型的基准数据集。
当前挑战
ImageNet-1k-256x256数据集在构建过程中面临了诸多挑战。首先,图像分类任务的核心挑战在于如何准确识别图像中的复杂对象,尤其是在不同光照、背景和视角下的识别。其次,数据集的构建涉及大规模的图像采集与标注工作,依赖于众包平台,确保标注的准确性和一致性是一个巨大的挑战。此外,数据集的版权和使用限制也增加了其使用的复杂性,用户需遵守严格的非商业研究用途协议,这限制了其在商业领域的应用。
常用场景
经典使用场景
ImageNet-1k-256x256 数据集在计算机视觉领域中被广泛应用于图像分类任务。其经典使用场景包括训练深度卷积神经网络(CNN)模型,如AlexNet、VGG、ResNet等,这些模型在ImageNet大规模视觉识别挑战赛(ILSVRC)中取得了显著的性能提升。通过使用该数据集,研究人员能够验证和优化模型的泛化能力,从而推动图像分类技术的发展。
解决学术问题
ImageNet-1k-256x256 数据集解决了计算机视觉领域中图像分类的基准问题。它为研究人员提供了一个标准化的数据集,用于评估和比较不同模型的性能。通过该数据集,学术界能够深入研究图像特征提取、模型架构设计以及优化算法,从而推动了深度学习在图像分类任务中的应用和发展。
衍生相关工作
ImageNet-1k-256x256 数据集的广泛应用催生了许多相关的经典工作。例如,AlexNet的提出标志着深度学习在图像分类中的突破,而VGG和ResNet则进一步优化了网络架构。此外,基于ImageNet的预训练模型也被广泛应用于迁移学习,使得在其他数据集上的任务表现得到了显著提升。这些工作不仅推动了计算机视觉领域的发展,也为其他领域的深度学习应用提供了重要参考。
以上内容由AI搜集并总结生成