five

HazyDet|无人机数据集|物体检测数据集

收藏
arXiv2024-09-30 更新2024-10-02 收录
无人机
物体检测
下载链接:
https://github.com/GrokCV/HazyDet
下载链接
链接失效反馈
资源简介:
HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。
提供机构:
石家庄校区,解放军工程大学
创建时间:
2024-09-30
AI搜集汇总
数据集介绍
main_image_url
构建方式
HazyDet数据集的构建过程融合了真实世界和合成数据,以模拟雾霾环境下的无人机视角物体检测。该数据集包含383,000个真实实例,这些实例从自然雾霾环境和正常场景中收集,并通过合成雾霾效果来模拟恶劣天气条件。数据处理过程中,使用了大气散射模型(ASM)来生成雾霾图像,并结合深度估计模型来确保深度信息的准确性。此外,还采用了半自动标注方法对未标注的雾霾天气图像进行标注,以确保数据集的高质量和高覆盖率。
特点
HazyDet数据集的显著特点在于其大规模和多样性,涵盖了从自然雾霾到合成雾霾的多种场景。数据集中的图像具有显著的尺度变化和清晰度差异,这为深度条件检测器(DeCoDet)的设计提供了丰富的先验知识。此外,数据集还包含了详细的深度信息,这些信息与雾霾场景的分布密切相关,为检测算法提供了重要的辅助信息。
使用方法
HazyDet数据集适用于开发和评估在雾霾环境下无人机视角的物体检测算法。研究者可以使用该数据集训练深度条件检测器(DeCoDet),该检测器能够利用深度信息来动态调整检测策略,从而提高在雾霾环境中的检测性能。数据集的开放性和详细标注使其成为评估现有算法和开发新算法的理想平台。
背景与挑战
背景概述
近年来,无人机(UAVs)因其成本效益和多功能性而迅速发展,广泛应用于精准农业、城市交通管理和军事侦察等领域。这些应用的成功依赖于机载摄像头对环境的准确感知能力,因此,开发适用于无人机视角的鲁棒高效目标检测技术成为一个关键的研究领域。尽管在通用目标检测方面取得了显著进展,但直接应用于无人机捕获的图像时,这些技术往往表现不佳,主要原因是无人机视角的独特性,如尺度变化和非均匀分布。为了解决这些问题,研究人员开发了专门算法,如多尺度特征融合和粗到细策略,但这些方法主要集中在无人机图像的内在特性上,忽略了恶劣天气条件对无人机视角检测的影响。为此,Changfeng Feng等人于2024年引入了HazyDet数据集,这是一个针对雾霾场景下无人机目标检测的大规模数据集,旨在填补相关基准的空白。
当前挑战
HazyDet数据集的构建面临多重挑战。首先,无人机在恶劣天气条件下的目标检测问题尚未得到充分探索,缺乏相关基准数据集。其次,构建过程中需要收集大量真实世界的雾霾场景数据,并进行高质量的标注,这一过程既耗时又昂贵。此外,模拟雾霾效果时,如何确保模拟数据与真实数据的一致性也是一个难题。最后,如何在雾霾条件下有效利用深度信息进行目标检测,同时避免图像恢复过程中引入的噪声干扰,是该数据集面临的主要技术挑战。
常用场景
经典使用场景
HazyDet数据集在无人机视角下的雾天场景物体检测中展现了其经典应用。该数据集通过结合真实雾天环境和合成雾效,提供了丰富的深度线索,使得深度条件检测器(DeCoDet)能够有效整合深度感知,从而在不同深度和雾度条件下显著提升物体检测的准确性。
衍生相关工作
HazyDet数据集的推出催生了一系列相关研究工作。例如,基于该数据集的深度条件检测器(DeCoDet)不仅提升了雾天场景下的物体检测性能,还启发了其他研究者在多尺度特征融合、深度感知和动态深度条件核模块等方面的创新研究。
数据集最近研究
最新研究方向
在无人机视角下的目标检测领域,HazyDet数据集的最新研究方向主要集中在利用深度信息增强检测性能。研究者们通过设计深度条件检测器(DeCoDet),结合多尺度深度感知检测头和动态深度条件核模块,有效利用了雾霾场景中的深度线索。这一方法不仅提升了检测精度,还显著改善了在恶劣天气条件下的检测鲁棒性。此外,研究还探索了深度估计损失函数和深度图质量对检测性能的影响,为未来在复杂环境中的无人机目标检测提供了新的思路和方法。
相关研究论文
  • 1
    HazyDet: Open-source Benchmark for Drone-view Object Detection with Depth-cues in Hazy Scenes石家庄校区,解放军工程大学 · 2024年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国农村金融统计数据

该数据集包含了中国农村金融的统计信息,涵盖了农村金融机构的数量、贷款余额、存款余额、金融服务覆盖率等关键指标。数据按年度和地区分类,提供了详细的农村金融发展状况。

www.pbc.gov.cn 收录

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

中国省级灾害统计空间分布数据集(1999-2020年)

该数据集为中国省级灾害统计空间分布数据集,时间为1999-2020年。该数据集包含中国各省自然灾害、地质灾害、地震灾害、森林火灾、森林病虫鼠害、草原灾害六类灾害的详细数据。数据量为206MB,数据格式为excel。

国家地球系统科学数据中心 收录

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录

NIST Thermochemical Database

NIST Thermochemical Database(NIST热化学数据库)是一个包含大量热化学数据的数据集,涵盖了各种化学物质的热力学性质,如焓、熵、自由能等。该数据库由美国国家标准与技术研究院(NIST)维护,旨在为科学研究和工业应用提供准确的热化学数据。

webbook.nist.gov 收录